Reflection of Slow Electrons from Graphene on the (110)W Face

M. M. Nishchenko, S. V. Smolnik, M. A. Shevchenko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 15.07.2014. Download: PDF

The effect of the step-by-step heating in the range of 1300—2800 K under vacuum up to $5\cdot10^{10}$ Pa on both the work function $\varphi$ ($Е = 0-50$ eV) reflection from the (110)W face are studied by the total current spectroscopy and contact potential difference by means of the Anderson method. As revealed, at 2400 K, a monolayer of carbon (graphene) with $\varphi = 5,08 \pm 0,02$ is formed on this face because of segregation of C from a bulk. Increasing the temperature to 2800 K and oxygen treatment remove carbon and form atomically clean (110)W face with $\varphi = 5,30$ eV. Peaks of electron reflection coefficient are observed from these surfaces. As found, their energy position (E) is proportional to the square of the serial number (n) of the peak due to quantum-dimensional effects in the over-barrier electron reflection. For (110)W face, three peaks are observed. With increasing n, their intensities decrease from 45% to 18%, and for graphene, six peaks are observed; intensities of first two peaks drop to 10%.

Key words: graphene, work function, electron reflection coefficient, total current spectroscopy.



PACS: 64.75.St,, 68.47.De, 68.49.Jk, 68.65.Pq, 73.30.+y, 81.05.ue

Citation: M. M. Nishchenko, S. V. Smolnik, and M. A. Shevchenko, Reflection of Slow Electrons from Graphene on the (110)W Face, Metallofiz. Noveishie Tekhnol., 37, No. 1: 67—78 (2015) (in Russian)

  1. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Ning Lau, Nano Lett., 8: 902 (2008). Crossref
  2. Zh. Chen, Yu-M. Lin, M. J. Rooks, and Ph. Avouris, Phys. E, 40: 228 (2007). Crossref
  3. H. Shioyama, J. Mater. Sci. Lett., 20: 499 (2001). Crossref
  4. L. D. Landau and E. M. Lifshits, Statisticheskaya Fizika [Statistical Physics] (Moscow: Fizmatlit: 2001) (in Russian).
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004). Crossref
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438: 197 (2005). Crossref
  7. A. M. Shikin, A. G. Rybkin, D. E. Marchenko, A. A. Popova, A. Yu. Varykhalov, and O. Rader, Rossiyskie Nanotekhnologii, 6, Nos. 9–10: 114 (2011) (in Russian).
  8. M. Eizenberg and J. M. Blakely, Surf. Sci., 82: 228 (1979). Crossref
  9. J. C. Hamilton and J. M. Blakely, Surf. Sci., 91: 199 (1980). Crossref
  10. E. Gillet, J. Less-Common Met., 71: 277 (1980). Crossref
  11. N. R. Gall', S. N. Mikhaylov, E. V. Rut'kov, and A. Ya. Tontegode, Poverkhnost'. Fizika, Khimiya, Mekhanika, No. 8: 58 (1986) (in Russian).
  12. E. V. Rut'kov and A. Ya. Tontegode, Zhurn. Tekhn. Fiz., 52, No. 5: 921 (1982) (in Russian).
  13. E. V. Rut'kov, Zhurn. Tekhn. Fiz., 63, No. 3: 122 (1993) (in Russian).
  14. R. P. Merrill and D. L. Smith, Surf. Sci., 21: 203 (1970). Crossref
  15. J. T. Grant and T. W. Haas, Surf. Sci., 21: 76 (1970). Crossref
  16. V. N. Ageev, E. V. Rut'kov, A. Ya. Tontegode, and N. A. Kholin, Fizika Tverdogo Tela, 24, No. 3: 780 (1982) (in Russian).
  17. N. R. Gall', M. S. Kobrin, S. N. Mikhaylov, E. V. Rut'kov, and A. Ya. Tontegode, Poverkhnost'. Fizika, Khimiya, Mekhanika, No. 9: 21 (1984) (in Russian).
  18. R. Rosei, M. De Cresceczi, F. Sette, C. Quaresima, A. Savoia, and P. Perfetti, Phys. Rev. B, 28: 1161 (1983). Crossref
  19. Hu Zi-Pu, D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai, Surf. Sci., 180: 433 (1987). Crossref
  20. A. Ya. Tontegode, Prog. Surf. Sci., 38: 201 (1991). Crossref
  21. N. D. Potekhina, Poverkhnost'. Fizika, Khimiya, Mekhanika, No. 4: 14 (1987) (in Russian).
  22. E. V. Rut'kov and N. R. Gall', Fizika Tverdogo Tela, 51, No. 8: 1639 (2009) (in Russian).
  23. V. I. Silantiev, N. A. Shevchenko, and B. Ya. Melamed, Ukrayins'kyy Fizychnyy Zhurnal, 24, No. 8: 1227 (1979) (in Russian).
  24. V. I. Silant'ev and N. A. Shevchenko, Vysokochistye Veshchestva, 4: 197 (1988) (in Russian).
  25. B. Ya. Melamed, V. I. Silantiev, and N. A. Shevchenko, Fizicheskie Metody Issledovaniya Metallov [Physical Methods of Investigation of Metals] (Kiev: Naukova Dumka: 1981) (in Russian).
  26. S. A. Komolov, Integral'naya Vtorichno-Ehlektronnaya Spektroskopiya Poverkhnosti [Integral Secondary-Electron Spectroscopy of a Surface] (Leningrad: Izd. Leningrad Univ.: 1986) (in Russian).
  27. V. E. Borisenko, A. I. Vorob'eva, and E. A. Utkina, Nanoelektronika [Nanoelectronics] (Moscow: BINOM: 2009) (in Russian).
  28. V. P. Dragunov, I. G. Neizvestnyy, and V. A. Gridchin, Osnovy Nanoelektroniki [Fundamental Nanoelectronics] (Moscow: Lotos: 2006) (in Russian).
  29. I. M. Bronshteyn and B. S. Frayman, Vtorichnaya Ehlektronnaya Emissiya [Secondary Electron Emission] (Moscow: Nauka: 1969) (in Russian).
  30. Yu. A. Kukharenko and S. A. Fridrikhov, Poverkhnost'. Fizika, Khimiya, Mekhanika, No. 1: 43 (1982) (in Russian).