Change of the Phase-Structural State of SmCo$_{5}$-Based Alloy During Solid-HDDR under Low Hydrogen Pressure

I. I. Bulyk$^{1}$, V. V. Burkhovetskyi$^{2}$, А. M. Trostianchyn$^{1}$

$^{1}$Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine

Received: 14.10.2013. Download: PDF

The change in phase-structural state of SmCo$_{5}$-based alloy during the hydrogenation, disproportionation, desorption, and recombination (HDDR) under hydrogen pressures of 0.5 MPa and 1.0 MPa in the temperature range 20—850°C with holding up to 5 h is investigated by means of the differential thermal and X-ray diffraction analyses and scanning electron microscopy methods. The dependence of phase composition on recombination temperature under solid-HDDR conditions is revealed. As found, the disproportionation reaction starts at the grain boundaries of SmCo$_{5}$ phase. For the first time, the possibility of finely dispersed structure formation by means of the HDDR in the case of partial disproportionation is established. As revealed under certain disproportionation conditions, the main phase residue is distributed throughout the bulk of alloy.

Key words: ferromagnetic alloy, SmCo$_{5}$, magnetic anisotropy, phase transformations initiated by hydrogen, hydrogen technologies.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i02/0169.html

DOI: https://doi.org/10.15407/mfint.37.02.0169

PACS: 61.05.cp, 61.66.Dk, 61.72.Ff, 64.60.Ej, 75.50.Tt, 81.07.Wx, 81.70.Pg

Citation: I. I. Bulyk, V. V. Burkhovetskyi, and А. M. Trostianchyn, Change of the Phase-Structural State of SmCo$_{5}$-Based Alloy During Solid-HDDR under Low Hydrogen Pressure, Metallofiz. Noveishie Tekhnol., 37, No. 2: 169—184 (2015) (in Ukrainian)


REFERENCES
  1. S. Sugimoto, J. Phys. D: Appl. Phys., 44: 1 (2011). Crossref
  2. E. F. Kneller and R. Hawig, IEEE Trans. Magn., 27: 3588 (1991). Crossref
  3. D. Goll and H. Kronmuller, Naturwissenschaften, 87: 423 (2000). Crossref
  4. N. Poudyal and J. P. Liu, J. Phys. D: Appl. Phys., 46: 043001 (2013). Crossref
  5. N. Cannesan and I. R. Harris, Bonded Magnets. NATO Science Series II. Mathematics, Physics and Chemistry (Ed. G. C. Hadjipanayis) (Dordrecht: Kluwer Academic Publishers: 2003), vol. 118, p. 13.
  6. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostianchyn, Sposib Formuvannya Anizotropnoyi Struktury Poroshkiv Splaviv Systemy Sm–Co Vodnevo-Vakuumnym Termichnym Obroblyannyam (Method of Anisotropy Structure Formation in Powders of Sm–Co System Alloys by Means of Hydrogen-Vacuum Thermal Treatment), Patent 96810 UA (H 01 F 1/053; H 01 F 1/055; B 82 B 3/00) (Publ. December 12, 2011) (in Ukrainian).
  7. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostianchyn, Sposib Formuvannya Anizotropnoyi Dribnozerennoyi Struktury Poroshkiv Splaviv Systemy Sm–Co Pomelom Ikh u Vodni (Method of Anisotropy Superfine Structure Formation in Powders of Sm–Co System Alloys by Milling under Hydrogen), Patent 96811 UA (H 01 F 1/053; H 01 F 1/055; B 82 B 3/00) (Publ. December 12, 2011) (in Ukrainian).
  8. I. I. Bulyk and V. V. Panasyuk, Physicochem. Mech. Mater., 48, No. 1: 9 (2012).
  9. http://www.ccp14.ac.uk/tutorial/powdcell
  10. www.ill.eu/sites/fullprof
  11. www.sigmaaldrich.com
  12. O. Gutfleisch, N. Martinez, M. Verdier, and I. R. Harris, J. Alloys Compd., 215: 227 (1994). Crossref
  13. O. Gutfleisch, M. Matzinger, J. Fidler, and I. R. Harris, J. Magn. Magn. Mat., 147, No. 3: 320 (1995). Crossref
  14. I. I. Bulyk, V. V. Burkhovetskyi, V. Yu. Tarenkov, and P. Ya. Lyutyy, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1437 (2013).
  15. V. A. Goltsov, S. B. Rybalka, D. Fruchart, and V. Didus, Abstr. Int. Conf. 'Progress in Hydrogen Treatment of Materials' (Donetsk–Coral Gables: Kassiopeya: 2001), p. 368.