Hydrogen Sorption Properties of Ti$_{0,475}$Zr$_{0,3}$Mn$_{0,225}$ Eutectic Alloy Alloyed with 2 at.% and 5 at.% of Vanadium

V. G. Ivanchenko, V. A. Dekhtyarenko, T. V. Pryadko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 01.10.2014; final version - 28.10.2014. Download: PDF

Sorption properties and kinetic parameters of hydrogenating and dehydrogenating processes of Ti$_{0,475}$Zr$_{0,3}$Mn$_{0,225}$ eutectic alloy, in which partial substitution of each of its component with 2% and 5% of vanadium is performed, are investigated by Sieverts’ method. As determined, the introduction of vanadium within the specified limits results in decrease of the temperature of the start of intensive hydrogen absorption, decrease of the duration of hydrogenating process, and also in substantial increase of sorption capacity (up to 2.85% wt.). As shown, the alloys, which are subjected to the sorption—desorption cycling, possess as much activated surface that behave themselves with regard to hydrogen similar to intermetallic compounds and can absorb hydrogen at the room temperature and the pressure of 0.23 MPa from the first seconds of the contact of the specimen with the hydrogen-containing medium with the average rate of $(2—4) \cdot 10^{3}$ wt.%/s.

Key words: hydrogenating, dehydrogenating, hydrogen capacity, eutectic alloys, intermetallide, solid solution.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i04/0521.html

DOI: https://doi.org/10.15407/mfint.37.04.0521

PACS: 61.66.Dk, 64.75.Bc, 68.43.Nr, 81.70.Jb, 81.70.Pg, 82.80.Ms, 88.30.rd

Citation: V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, Hydrogen Sorption Properties of Ti$_{0,475}$Zr$_{0,3}$Mn$_{0,225}$ Eutectic Alloy Alloyed with 2 at.% and 5 at.% of Vanadium, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521—530 (2015)


REFERENCES
  1. M. H. Kryder, Proc of Symp. 'Computerworld's Storage Networking World Conference' (April 3–6, 2006) (San Diego, CA, USA: Manchester Grand Hyatt: 2006), p. 350.
  2. M. Albrecht and C. Brombacher, phys. status solidi (a), 210, Iss. 7: 1272 (2013). Crossref
  3. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L. Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci., 266: 100 (2013). Crossref
  4. L. Liu, W. Sheng, J. Bai, J. Cao, Yu. Lou, Y. Wang, F. Wei, and J. Lu, Appl. Surf. Sci., 258: 8124 (2012). Crossref
  5. K. Utsumiya, T. Seki, and K. Takanashi, J. Appl. Phys., 110: 103911 (2011). Crossref
  6. http://www.xakep.ru/magazine/xs/062/008/1.asp
  7. K. Şendur and W. Challener, Appl. Phys. Lett., 94: 032503 (2009). Crossref
  8. http://www.idema.org/wp-content/downloads/1857.pdf
  9. Y. S. Yu, Hai-Bo Li, W. L. Li et al., J. Magn. Magn. Mater., 320: L125 (2008). Crossref
  10. Ch. Feng, Q. Zhan, B. Li et al., Appl. Phys. Lett., 93: 152513 (2008). Crossref
  11. B. Wang, K. Barmak, and T. J. Klemmer, IEEE Trans. Magn., 46, No. 6: 1773 (2010). Crossref
  12. W. Y. Zhang, H. Shima, F. Takano, H. Akinaga, X. Z. Yu, T. Hara, W. Z. Zhang, K. Kimoto, Y. Matsui, and S. Nimori, J. Appl. Phys., 106: 033907 (2009). Crossref
  13. Iu. M. Makogon, E. P. Pavlova, S. I. Sidorenko, T. I. Verbytska, I. A. Vladymyrskyi, and R. A. Shkarban, Metallofiz. Noveishie Tekhnol., 35, No. 4: 553 (2013) (in Russian).
  14. K. Barmak, J. Kim, L. H. Lewis et al., J. Appl. Phys., 98: 033904 (2005). Crossref
  15. A. C. Sun, F. T.Yuan, and Jen-Hwa Hsu, J. of Physics: Conference Series, 200: 1020099 (2010). Crossref
  16. Yu. M. Makogon, O. P. Pavlova, S. I. Sidorenko, T. I. Verbytska, I. A. Vladymyrskyi, and O. V. Figurna, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1425 (2013) (in Ukrainian).
  17. T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J.-I. Akiyama, Appl. Phys. Lett., 80, No. 12: 2147 (2009). Crossref
  18. J.-I. Ikemoto and Sh. Nakagawa, J. Appl. Phys., 103: 07B512 (2008). Crossref