Complex Investigation of the Fermi Surface in HfB$_{2}$

S. M. Sichkar, V. N. Antonov

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 12.03.2015. Download: PDF

The electronic structure, Fermi surface, angle dependence of the cyclotron masses, and extremal cross sections of the Fermi surface of the hafnium diboride are investigated from the first principles using the fully relativistic and full-potential linear muffin-tin orbitals’ methods. A good agreement with experimental data of cyclotron masses and extremal cross sections of the Fermi surface is achieved.

Key words: electronic structure, Fermi surface, cyclotron masses, LMTO, diborides.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i05/0581.html

DOI: https://doi.org/10.15407/mfint.37.05.0581

PACS: 63.20.dk, 63.20.kd, 71.15.Mb, 71.15.Rf, 71.18.+y, 71.20.Ps, 74.70.Ad

Citation: S. M. Sichkar and V. N. Antonov, Complex Investigation of the Fermi Surface in HfB$_{2}$, Metallofiz. Noveishie Tekhnol., 37, No. 5: 581—591 (2015)


REFERENCES
  1. K. Upadhya, J. M. Yang, and W. P. Hoffmann, Am. Ceram. Soc. Bull., 76: 51 (1997).
  2. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, J. American Ceramic Society, 90: 1347 (2007). Crossref
  3. C. Mroz, Am. Ceram. Soc. Bull., 73: 141 (1994).
  4. A. S. Brown, Aerospace Am., 35: 20 (1997).
  5. K. Kuwabara, Bull. Ceram. Soc. Jpn., 37: 267 (2002).
  6. S. Norasetthekul, P. T. Eubank, W. L. Bradley, B. Bozkurt, and B. Stucker, J. Mater. Sci., 34: 1261(1999). Crossref
  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London), 410: 63 (2001). Crossref
  8. V. A. Gasparov, N. S. Sidorov, I. I. Zverkova, and M. P. Kulakov, JETP Lett., 73: 532 (2001). Crossref
  9. D. P. Young, P. W. Adams, J. Y. Chan, and F. R. Fronczek, Preprint Cond-Mat/0104063 (2001).
  10. C. Buzea and T. Yamashita, Supercond. Sci. Technol., 14: R115 (2001). Crossref
  11. V. B. Pluzhnikov, I. V. Svechkarev, A. V. Dukhnenko, A. V. Levchenko, V. B. Filippov, and A. Chopnik, Low Temp. Phys., 33: 350 (2007). Crossref
  12. Y. Yang, S. Jayaraman, B. Sperling, D. Y. Kim, G. S. Girolami, and J. R. Abelson, J. Vacuum Sci. Technol. A, 25: 200 (2007). Crossref
  13. G. E. Grechnev, A. V. Fedorchenko, A. V. Logosha, A. S. Panfilov, I. V. Svechkarev, V. B. Filippov, A. B. Lyashchenko, and A. V. Evdokimova, J. Appl. Cryst., 481: 75 (2009).
  14. A. V. Fedorchenko, G. E. Grechnev, A. S. Panfilov, A. V. Logosha, I. V. Svechkarev, V. B. Filippov, A. B. Lyashchenko, and A. V. Evdokimova, Low Temp. Phys., 35: 82 (2009). Crossref
  15. C. S. Lue and W. J. Lai, phys. status solidi (b), 242: 1108 (2005). Crossref
  16. P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Phys. Rev. B, 63: 045115 (2001). Crossref
  17. J. D. Zhang and X. L. Cheng, Physica B, 405: 3532 (2010). Crossref
  18. J. D. Zhang, X. L. Cheng, and D. H. Li, J. Alloys Compd., 509: 9577 (2011). Crossref
  19. H. Li, L. Zhang, Q. Zeng, and L. Cheng, J. Phase Equilib. Diffus., 32: 422 (2011). Crossref
  20. A. Pasturel, C. Colinet, and P. Hichter, Physica B, 132: 177 (1985). Crossref
  21. L. Zhang, D. A. Pejakovic, J. Marschall, and M. Gasch, J. American Ceramic Society, 94: 2562 (2011). Crossref