Low-Temperature Elastic Properties of Zr-Based Bulk Metallic Glasses

S. O. Bakai, O. S. Bulatov, V. F. Dolzhenko, V. S. Klochko, A. V. Korniyets, V. I. Spitsyna

National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine

Received: 26.03.2015. Download: PDF

Temperature dependences of elastic constants, $с_{ij}(T)$, of Zr-based bulk metallic glasses (BMG), Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ and Zr$_{52.5}$Ti$_{5}$Cu$_{17.9}$Ni$_{14.6}$Al$_{10}$ (at.%), are studied in detail within the range of temperature from 78 K up to 300 K using resonant ultrasound spectroscopy. The results enable one to determine the temperature behaviour of both the mechanical properties–the shear, longitudinal, bulk elastic moduli, the Poisson’s ratio, and the vibrational characteristics–Grüneisen parameters and Debye temperature. Analysis of $с_{ij}(T)$ is based on the physical model of the close packing of atomic clusters with icosahedral symmetry of atomic ordering.

Key words: elastic constants, elastic constant tensor, relaxation, bulk metallic glasses.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i05/0637.html

DOI: https://doi.org/10.15407/mfint.37.05.0637

PACS: 43.35.Fj, 43.58.Dj, 61.43.Dq, 62.20.de, 62.20.dj, 62.20.dq, 81.40.Jj

Citation: S. O. Bakai, O. S. Bulatov, V. F. Dolzhenko, V. S. Klochko, A. V. Korniyets, and V. I. Spitsyna, Low-Temperature Elastic Properties of Zr-Based Bulk Metallic Glasses, Metallofiz. Noveishie Tekhnol., 37, No. 5: 637—647 (2015) (in Russian)


REFERENCES
  1. V. N. Novikov and A. P. Sokolov, Nature, 431: 961 (2004). Crossref
  2. V. N. Novikov and A. P. Sokolov, Phys. Rev. B, 74: 064203 (2006). Crossref
  3. T. Scopigno, G. Ruocco, F. Settle, and G. Monaco, Science, 302: 849 (2003). Crossref
  4. P. Bordat, F. Affouard, M. Descamps, and K. L. Ngai, Phys. Rev. Lett., 93: 105502 (2004). Crossref
  5. W. H. Wang, J. Appl. Phys., 99: 093506 (2006). Crossref
  6. Zh. Zhang, V. Keppens, and P. K. Law, J. Mater. Res., 22: 364 (2007). Crossref
  7. A. S. Bakai, S. A. Bakai, J. Eckert, I. M. Neklyudov, and Y. I. Savchenko, J. Non-Cryst. Solids, 353, Iss. 32–40: 3754 (2007). Crossref
  8. V. D. Fil', P. A. Bezuglyy, and E. A. Missalityn, Pribory i Tekhnika Eksperimenta, No. 3: 210 (1973) (in Russian).
  9. C. T. Liu, Heatherly L. Easton, C. A. Carmicheal, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, and A. Inoue, Metall. Mater. Trans. A, 29: 1811 (1998). Crossref
  10. J. Q. Wang, W. H. Wang, H. B. Yu, and H. Y. Bai, Appl. Phys. Lett., 94: 121904 (2009). Crossref
  11. Y. Yokoyama, J. Non-Cryst. Solids, 316: 104 (2003). Crossref
  12. Y. Yokoyama, K. Fukaura, and A. Inoue, Intermetallics, 10: 1113 (2002). Crossref
  13. M. Q. Jiang and L. H. Dai, Phil. Mag. Lett., 90, Iss. 4: 269 (2010). Crossref
  14. A. N. Filanovich, A. A. Povzner, V. D. Bodryakov, Yu. Yu. Tsiovkin, and V. V. Dremov, Pis'ma v ZhTF, 35, Iss. 20: 1 (2009) (in Russian).
  15. D. B. Miracle, JOM, 64, No. 7: 646 (2012). Crossref
  16. D. B. Miracle, Nature Materials, 3: 697 (2014). Crossref
  17. M. Sanolor and Ja. Kecskers, Chinese Science Bulletin, 56, No. 36: 3937 (2011). Crossref
  18. S. A. Bakai, A. S. Bulatov, V. S. Klochko, A. V. Korniets, and M. P. Fateev, Fizika Nizkikh Temperatur, 38, No. 10: 1197 (2012) (in Russian).
  19. A. S. Bakai, Poliklasternye Amorfnye Tela (Kharkov: Sinteks: 2013) (in Russian).