The Effects of Rotation Speed and Friction Time for Joining of AISI 4340—2205 Steels by Friction Welding

U. Caligulu$^{1}$, M. Yalcinoz$^{2}$, N. Kati$^{2}$, Z. Balalan$^{3}$, S. Islak$^{4}$

$^{1}$Firat University, Faculty of Technology, Department of Metallurgy and Materials Engineering, 23119 Elazig, Turkey
$^{2}$Firat University, Faculty of Technical Education, Department of Metallurgy Education, 23119 Elazig, Turkey
$^{3}$Bingol University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, 12000 Bingol, Turkey
$^{4}$Kastamonu University, Faculty of Engineering and Architecture, Kastamonu, Turkey

Received: 20.01.2015. Download: PDF

Friction welding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. In the fusion welding methods for joining different materials, brittle intermetallic compounds phases are produced in the fusion zone, which reduces the strength of the welding joint. In this study, the effects of rotation speed and friction time for joining of AISI 4340—2205 steels welded by friction are investigated. Specimens of AISI 4340 tempered steel and AISI 2205 duplex stainless steel, each of 12 mm diameters, are used to fabricate the joints. The friction welding tests are carried out using a direct-drive type friction-welding machine, which was designed and manufactured for this purpose by us. After friction welding, in order to determine the occurred microstructural changes, the interface regions of the welded specimens are examined by means of OM, SEM, EDS and X-Ray analysis. Microhardness and tensile tests are conducted to determine the mechanical properties of the welded specimens. The experimental results indicate that AISI 4340 tempered steel could be joined to AISI 2205 duplex stainless steel using the friction welding technique and for achieving a weld with sufficient strength. Tensile strength values also confirm this result, and, at the interface, intermetallic phases do not occurred. The maximum tensile strength of 635.66 MPa could be obtained for the joints welded under the welding conditions of rotation speed of 2200 rpm, friction pressure of 40 MPa, forging pressure of 80 MPa, friction time of 6 s, and forging time of 3 s.

Key words: AISI 4340, AISI 2205, friction welding, rotation speed, friction time.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i05/0665.html

DOI: https://doi.org/10.15407/mfint.37.05.0665

PACS: 06.60.Vz, 62.20.Qp, 81.20.Vj, 81.40.Pq, 81.70.Bt, 81.70.Jb, 83.50.Uv

Citation: U. Caligulu, M. Yalcinoz, N. Kati, Z. Balalan, and S. Islak, The Effects of Rotation Speed and Friction Time for Joining of AISI 4340—2205 Steels by Friction Welding, Metallofiz. Noveishie Tekhnol., 37, No. 5: 665—681 (2015)


REFERENCES
  1. ASM Handbook on Welding (Eds. K. Ferjutz and J. R. Davis), vol. 6, p. 471 (1993).
  2. J. Charles, Proc. of 7th Duplex Int. Conf. and Expo (Grado: 2007).
  3. J. C. Lippold and D. J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Hoboken, NJ: Wiley-Interscience: 2005).
  4. A. V. Jebaraj and L. Ajaykumar, Indian Journal of Engineering and Materials Sciences, No. 21: 155 (2014).
  5. S. D. Meshram, T. Mohandas, and G. Madhusudhan Reddy, J. Mater. Processing Technol., 184, Iss. 1–3: 330 (2007). Crossref
  6. P. Sathiya, S. Aravindan, and A. Noorul Haq, Materials and Design, 29, Iss. 6: 1099 (2008). Crossref
  7. S. Celik and I. Ersozlu, Material Design, 30, Iss. 4: 970 (2009). Crossref
  8. http://www.celmercelik.com
  9. M. Sahin and H. E. Akata, Indust. Lubricat. Tribol., 56, No. 2: 122 (2004). Crossref
  10. M. Sahin, Materials and Design, 28: 1348 (2007). Crossref
  11. I. Kirik and N. Ozdemir, Int. J. Mater. Res., 104, No. 8: 769 (2013). Crossref
  12. N. Ozdemir, F. Sarsilmaz, and A. Hascalik, Material Design, 28, Iss. 1: 301 (2007). Crossref
  13. Welding Handbook. Vol. 2. Welding Processes (8th Ed.) (Miami: American Welding Society Inc.: 1997), No.739–761.
  14. R. E. Chalmers, Manufacturing Engineering, No. 126: 64 (2001).
  15. N. Ozdemir, Mater. Lett., 59, Iss. 19–20: 2504 (2005). Crossref
  16. D. E. Spindler, Welding Journal, 73, No. 3: 37 (1994).
  17. I. Kirik, N. Ozdemir, and U. Caligulu, Kovove Materials, No. 51: 4 (2013).
  18. I. Kirik, N. Ozdemir, and F. Sarsilmaz, MP Material Testing, No. 54: 10 (2012).
  19. M. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawati, and A. B. Ismail, Sci. Technol. Welding and Joining, No. 15: 7 (2010).
  20. J. Domblesky and F. F. Kraft, J. Mater. Process. Technol., 191, Iss. 1–3: 82 (2007). Crossref
  21. A. Urena, E. Otero, M. V. Utrilla, and C. J. Múnez, J. Mater. Process. Technol., 182, Iss. 1–3: 624 (2007). Crossref
  22. J. S. Ku, N. G. Ho, and S. C. Tjong, J. Mater. Process. Technol., 63, Iss. 1–3: 770 (1997). Crossref
  23. T. Kannan and N. Murugan, J. Mater. Process. Technol., 176, Iss. 1–3: 230 (2006). Crossref
  24. U. Reisgen, M. Schleser, O. Mokrov, and E. Ahmed, Optic Laser Technology, 44, Iss. 1: 92 (2012). Crossref
  25. A. N. Dobrovidov, Weld Prod., No. 22: 3 (1975).
  26. A. Ishibashi, S. Ezoe, and S. Tanaka, Bulletin of the JSME, No. 26: 216 (1983).
  27. P. Sathiya, S. Aravindan, and A. Noorul Haq, Int. J. Adv. Man. Tech., 26, Iss. 5–6: 505 (2005). Crossref
  28. D. Ananthapadmanaban, V. Seshagiri Rao, Nikhil Abraham, and K. Prasad Rao, Materials and Design, 30, Iss. 7: 2642 (2009). Crossref
  29. V. V. Satyanarayana, G. Madhusudhan Reddy, and T. Mohandas, J. Materials Processing Technology, 160, Iss. 2: 128 (2005). Crossref
  30. M. Yilmaz (Istanbul: Technical University of Yildiz: 1993).
  31. R. Paventhan, P. R. Lakshminarayanan, and V. Balasubramanian, J. Iron and Steel Research, International, 19, Iss. 1: 66 (2012). Crossref
  32. S. Mercan and N. Ozdemir, NWSA: Technological Applied Sciences, 8, Iss. 2: 15 (2013). Crossref
  33. N. Kati and S. Ozan, New World Science Academy (NWSA), 2A0086, No. 9 (3): 22 (2014).