Fabrication and Physical Properties of Mono- and Multilayer Silver Nanostructures

V. Kh. Kasiyanenko, V. A. Artemyuk, V. L. Karbіvskyy, M. Т. Kogut, L. І. Karbіvska, I. A. Borodyanskyi

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 12.03.2015; final version - 06.04.2015. Download: PDF

The silver nanostructures obtained by thermal vacuum deposition on the Si(111) surface are investigated by high-resolution tunnelling microscopy. As revealed, the silver on the silicon surface can form nanostructures consisting of atomic planes. Metallic nanoformations can take the shape of regular hexagons. For these structures, minimum height of the step growth varies up to 0.23 nm. Specific peculiarities of the nanorelief transformation with the sample-temperature increasing are detected as a result of horizontal displacement due to surface drift. The possibility of preserving of the Si(111) 7$\times$7 structure is presented.

Key words: surface nanorelief, nanoroughness, metal monolayer, thermal spraying.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i06/0763.html

DOI: https://doi.org/10.15407/mfint.37.06.0763

PACS: 68.35.bd, 68.37.Ef, 68.47.De, 68.55.jd, 68.55.jm, 68.60.Dv, 81.15.Cd

Citation: V. Kh. Kasiyanenko, V. A. Artemyuk, V. L. Karbіvskyy, M. Т. Kogut, L. І. Karbіvska, and I. A. Borodyanskyi, Fabrication and Physical Properties of Mono- and Multilayer Silver Nanostructures, Metallofiz. Noveishie Tekhnol., 37, No. 6: 763—773 (2015) (in Ukrainian)


REFERENCES
  1. Y. Zhou, Q.-H. Wu, C. Zhou, H. Zhang, H. Zhan, and J. Kang, Surf. Sci., 602: 638 (2008). Crossref
  2. G. Yang, Y. Zhou, H. Long, Y. Li, and Y. Yang, Thin Solid Films, 515, Iss. 20—21: 7926 (2007). Crossref
  3. M. Rai, A. Yadav, and A. Gade, Biotechnology Advances, 27, Iss. 1: 76 (2009). Crossref
  4. R. M. Tilaki, A. Irajizad, and S. M. Mahdavi, Appl. Phys. A, 84, Iss. 1—2: 215 (2006). Crossref
  5. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, Optical Materials, 25, Iss. 4: 439 (2004). Crossref
  6. H.-J. Lee, S.-Y. Yeo, and S.-H. Jeong, J. Mat. Sci. 38, Iss. 10: 2199 (2003). Crossref
  7. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, Chemistry—A European Journal, 11, Iss. 2: 454 (2005). Crossref
  8. V. L. Karbivskyy, V. V. Vishniak, and V. H. Kasiyanenko, J. Adv. Microscopy Res., 6, No. 4: 278 (2011). Crossref
  9. P. Kocán, P. Sobotík, I. Ošt'ádal, and M. Kotrla, Surf. Sci., 566—568, Part 1: 216 (2004). Crossref
  10. A. Roy, K. Bhattacharjee, J. Ghatak, and B. N. Dev, Appl. Surf. Sci., 258, Iss. 7: 2255 (2012). Crossref
  11. G. Pötschke, J. Schröder, C. Günther, R. Q. Hwang, and R. J. Behm, Surf. Sci., 251—252: 592 (1991). Crossref
  12. B. Voigtländer, Surf. Sci. Rept., 43, Iss. 5—8: 127 (2001). Crossref
  13. J. Tersoff and F. K. LeGoues, Phys. Rev. Lett., 72: 3570 (1994). Crossref
  14. S. Nakanishi, K. Umezawa, M. Yoshimura, and K. Ueda, Phys. Rev. B, 62: 13136 (2000). Crossref
  15. G. Meyer and K. H. Rieder, Surf. Sci., 331—333, Part A: 600 (1995). Crossref
  16. M. Miyazaki and H. Hirayama, Surf. Sci., 602, Iss. 1: 276 (2008). Crossref
  17. H. Hirayama, Surf. Sci., 603, Iss. 10—12: 1492 (2009). Crossref
  18. D. A. Fokin, S. I. Bozhko, V. Dubost, F. Debontridder, A. M. Ionov, T. Cren, and D. Roditchev, Nanosistemi, Nanomateriali, Nanotehnologii, 9, No. 2: 333 (2011) (in Russian).