Physical Mechanisms of SiO$_{2}$ Target Sputtering with Accelerated Ions of C$_{60}$

M. V. Maleyev, E. M. Zubarev, V. E. Pukha, A. M. Drozdov, O. S. Vus

National Technical University ‘Kharkiv Polytechnic Institute’, 21 Frunze Str., UA-61002 Kharkiv, Ukraine

Received: 24.03.2015. Download: PDF

Growth of carbon films and surface erosion during irradiation of quartz (SiO$_{2}$) by accelerated C$_{60}$-ion beams with energies in the range of 2.5—10 keV at a target temperature of 373 K are investigated. As found, the growth of carbon films on the surface of the irradiated targets of SiO$_{2}$ is observed in the range of ion energies of 2.5—3.75 keV. In this case, carbon deposition rate is limited by the process of erosion of the growth surface, the intensity of which depends on the energy of the ions. When the ion energy is higher than the upper values of these intervals, the film is not formed on the surface, and erosion of the target material takes place. The possibility of both removing of the amorphous oxide from the surface of Si substrate and forming of an epitaxial silicon carbide thereon is shown.

Key words: structure of films, sputtering of surface, energy of ion, quartz, fullerene.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i06/0775.html

DOI: https://doi.org/10.15407/mfint.37.06.0775

PACS: 61.80.Jh, 61.82.Fk, 68.37.Lp, 68.47.Gh, 68.55.Nq, 81.40.Wx, 81.65.Cf

Citation: M. V. Maleyev, E. M. Zubarev, V. E. Pukha, A. M. Drozdov, and O. S. Vus, Physical Mechanisms of SiO$_{2}$ Target Sputtering with Accelerated Ions of C$_{60}$, Metallofiz. Noveishie Tekhnol., 37, No. 6: 775—788 (2015) (in Russian)


REFERENCES
  1. N. Winograd, Surf. Interface Anal., 45, No. 1: 3 (2013). Crossref
  2. N. Winograd, Anal. Chem., 77, No. 7: 142 (2005). Crossref
  3. E. J. Lanni, S. J. Dunham, P. Nemes, S. S. Rubakhin, and J. V. Sweedler, J. Am. Soc. Mass Spectrom., 25, No. 11: 1897 (2014). Crossref
  4. D. Kobayashi, Y. Yamamoto, and T. Isemura, Surf. Interface Anal., 45, No. 1: 113 (2013). Crossref
  5. Y. Y. Chen, B.Y. Yu, W. B. Wang, M. F. Hsu, W. C. Lin, Y. C. Lin, J. H. Jou, and J. J. Shyue, Anal. Chem., 80, No. 2: 501 (2008). Crossref
  6. N. Sanada, A. Yamamoto, R. Oiwa, and Y. Ohashi, Surf. Interface Anal., 36, No. 3: 280 (2004). Crossref
  7. V. E. Pukha, E. N. Zubarev, A. N. Drozdov, A. T. Pugachov, S. H. Jeong, and S. C. Nam, J. Phys. D: Appl. Phys., 45, No. 33: 335302 (2012). Crossref
  8. V. E. Pukha, A. T. Pugachov, N. P. Churakova, E. N. Zubarev, V. E. Vinogradov, and S. C. Nam, J. Nanosci. Nanotechnol., 12, No. 6: 4762 (2012). Crossref
  9. O. V. Penkov, V. E. Pukha, E. N. Zubarev, S. S. Yoo, and D. E. Kim, Tribology International, 60: 127 (2013). Crossref
  10. K. D. Krantzman and B. J. Garrison, J. Phys. Chem. C, 113, No. 8: 3239 (2009). Crossref
  11. G. Gillen, J. Batteas, C. A. Michaels, P. Chi, J. Small, E. Windsor, A. Fahey, J. Verkouteren, and K. J. Kim, Appl. Surf. Sci., 252, No. 19: 6521 (2006). Crossref
  12. J. Kozole and N. Winograd, Appl. Surf. Sci., 255, No. 8: 886 (2008). Crossref
  13. K. D. Krantzman, D. B. Kingsbury, and B. J. Garrison, Nucl. Instrum. Methods Phys. Res., Sect. B, 255, No. 1: 238 (2007).
  14. M. Khadem, O. V. Penkov, V. E. Pukha, M. V. Maleyev, and D. E. Kim, Carbon, 80: 534 (2014). Crossref
  15. N. I. Ionov, Zh. Tekh. Fiz., 34: 769 (1964); idem, Soviet Physics–Technical Physics, 9: 591 (1964).
  16. D. L. Windt, Comp. Phys., 12, No. 4: 360 (1998). Crossref
  17. D. G. Stearns, D. P. Gaines, D.-W. Sweeney, and E. M. Gullikson, J. Appl. Phys., 84, No. 2: 1003 (1998). Crossref
  18. M. V. Maleyev, E. N. Zubarev, V. E. Pukha, A. N. Drozdov, A. S. Vus, and A. Yu. Devizenko, Fizicheskaya Inzheneriya Poverkhnosti, 13, No. 1: 91 (2015) (in Russian).
  19. Raspylenie Tvyordykh Tel Ionnoy Bombardirovkoy. Fizicheskoe Raspylenie Odnoelementnykh Tvyordykh Tel (Ed. R. Berish) (Moscow: Mir: 1984), Iss. 1 (Russian translation).
  20. S. Sun, C. Szakal, N. Winograd, and A. Wucher, J. Am. Soc. Mass Spectrom., 16, No. 10: 1677 (2005). Crossref
  21. Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd, and B. J. Garrison, J. Phys. Chem. B, 108, No. 23: 7831 (2004). Crossref
  22. P. Sigmund, Thin Solid Films, 520, No. 19: 6031 (2012). Crossref
  23. Tekhnologiya Tonkikh Plyonok: Spravochnik [Handbook of Thin Film Technology] (Eds. L. I. Maissel and R. Glang) (Moscow: Sovetskoe Radio: 1977), vol. 1 (Russian translation).
  24. K. D. Krantzman, C. A. Briner, and B. J. Garrison, J. Phys. Chem. A, 118, No. 31: 8081 (2014). Crossref
  25. V. E. Pukha, A. N. Stetsenko, S. N. Dub, and J. K. Lee, J. Nanosci. Nanotechnol., 7, Nos. 4—5: 1370 (2007). Crossref
  26. R. Verucchi, L. Aversa, M. V. Nardi, S. Taioli, S. Beccara, D. Alfè, L. Nasi, F. Rossi, G., Salviati, and S. Iannotta, J. Am. Chem. Soc., 134, No. 42: 17400 (2012). Crossref
  27. M. Zhong, C. Zhang, and J. Luo, Appl. Surf. Sci., 254, No. 21: 6742 (2008). Crossref