Influence of Pulse Laser Radiation on a Composition of the Surface Layers of Titanium Ti—6Al—4V Alloy

M. O. Vasylyev, S. P. Chenakin, M. M. Nyshchenko, L. F. Yatsenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 03.12.2014; final version - 20.05.2015. Download: PDF

X-ray photoelectron spectroscopy is applied to study the composition of the surface layer of a titanium Ti—6Al—4V alloy after pulsed (Nd:YAG) laser treatment in air. The obtained data provide evidence of intensive oxidation of the surface with formation of a layer containing a mixture of ТіО$_{2}$, Ті$_{2}$О$_{3}$, Al$_{2}$O$_{3}$ oxides and surface Ti—C, Al—C, V—C carbides. The laser irradiation of the Ti—6Al—4V alloy in air is revealed to give rise to a significant change of the electrochemical surface potential in a solution of artificial saliva caused by improvement of corrosion resistance of the modified surface.

Key words: morphology, elemental and phase composition, electrochemical surface potential, laser irradiation, Ti-6Al-4V titanium alloy.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i07/0861.html

DOI: https://doi.org/10.15407/mfint.37.07.0861

PACS: 61.80.Ba, 68.37.Hk, 68.47.Gh, 68.55.Nq, 81.65.Mq, 81.65.Rv, 82.80.Pv

Citation: M. O. Vasylyev, S. P. Chenakin, M. M. Nyshchenko, and L. F. Yatsenko, Influence of Pulse Laser Radiation on a Composition of the Surface Layers of Titanium Ti—6Al—4V Alloy, Metallofiz. Noveishie Tekhnol., 37, No. 7: 861—870 (2015) (in Russian)


REFERENCES
  1. M. A. Vasylyev, M. M. Nishchenko, and P. A. Gurin, Uspehi Fiziki Metallov, 11: 209 (2010) (in Russian). Crossref
  2. M. E. Khosroshahi, M. Mahmoodi, and J. Tavakoli, Appl. Surf. Sci., 253: 8772 (2007). Crossref
  3. M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, Appl. Surf. Sci., 253: 2551 (2006). Crossref
  4. M. A. Vasylyev, V. I. Beda, and P. A. Gurin, Fiziologicheskiy Otklik na Sostoyanie Poverkhnosti Metallicheskikh Dental'nykh Implantatov (Lviv: GalDent: 2010) (in Russian).
  5. V. V. Savich, D. I. Saroka, M. G. Kiselev, and M. V. Makarenko, Modifikatsiya Poverkhnosti Titanovykh Implantatov i Ee Vliyanie na Ikh Fiziko-Khimicheskie i Biomekhanicheskie Parametry v Biologicheskikh Sredakh (Minsk: Belaruskaya Navuka: 2012) (in Russian).
  6. I. V. Rodionov and K. G. Butovskiy, Inzhenernaya Fizika, No. 1: 17 (2009) (in Russian).
  7. Y. Ji-Hyun, C. Bernard, F. Variola, and S. F. Zalza, Surf. Sci., 600: 4613 (2006). Crossref
  8. V. I. Bida, P. O. Huryn, M. O. Vasyl'yev, and V. S. Filatova, Zb. Nauk. Prats' Spivrobit. NMAPO im. P. L. Shupyka, 21, No. 2: 87 (2012) (in Ukrainian).
  9. O. Böse, E. Kemnitz, A. Lippitz, and W. E. S. Unger, Fresenius J. Anal. Chem., 358: 175 (1997). Crossref
  10. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  11. L. Zhang and R. V. Koka, Mater. Chem. Phys., 57: 23 (1998). Crossref
  12. C. Hinnen, D. Imbert, J. M. Siffre, and P. Marcus, Appl. Surf. Sci., 78, No. 3: 219 (1994). Crossref
  13. J. G. Choi, Appl. Surf. Sci., 148: 64 (1999). Crossref