The Wear Treatment by Nd:YAG Laser on Ti—6Al—4V Alloy: Effect of the Spot Size on Laser Beam and Seam Morphology

A. Gursel$^{1,2}$

$^{1}$International University of Sarajevo, 15 Hrasnička cesta, 71210 Sarajevo, Bosnia and Herzegovina
$^{2}$Düzce University, Department of Mechanical Engineering, Faculty of Engineering, 81620 Düzce, Turkey

Received: 14.05.2015. Download: PDF

Due to the excellent corrosion resistance, high strength to weight ratio and high operating temperature, titanium and titanium alloys lead to successful application in various fields including the medical and aerospace industries. Among the reliable treatments techniques, laser weld can provide a significant benefit for the titanium alloys because of its precision, rapid processing capability and controlling the parameters with their effects. The Nd:YAG laser parameters, such as spot size and shape, pulse energy and duration, travel speed, peak power and frequency of repetition, influence directly or synergistically the quality of pulsed seam welds and their morphology. In this study, 1.5 mm thick titanium Ti6Al4V alloy sheet surfaces are treated by SigmaLaser®300 type Nd:YAG pulsed laser. The influence of spot size on seam morphology and effects to the surface are investigated. The seam and surface quality is characterized in terms of weld morphology and microhardness.

Key words: Nd:YAG laser welding, spot size, surface treatment, Ti—6Al—4V alloy.



PACS: 06.60.Vz, 61.72.Ff, 61.80.Ba, 62.20.Qp, 81.20.Vj, 81.40.Pq, 81.40.Wx

Citation: A. Gursel, The Wear Treatment by Nd:YAG Laser on Ti—6Al—4V Alloy: Effect of the Spot Size on Laser Beam and Seam Morphology, Metallofiz. Noveishie Tekhnol., 37, No. 8: 1037—1048 (2015)

  1. S. H. Wang, M. D. Wei, and L. W. Tsay, Mater. Lett., 57: 1815 (2003). Crossref
  2. G. Casalino, F. Curcio, F. Memola, and C. Minutolo, J. Mater. Process. Technol., 167: 422 (2005). Crossref
  3. M. Akbari, S. Saedodin, D. Toghraie, R. S. Razavi, and F. Kowsari, Optics Laser Technol., 59: 52 (2014). Crossref
  4. V. K. Balla, J. Soderlind, S. Bose, and A. Bandyopadhyay, J. Mechanical Behaviour of Biomedical Materials, 32: 335 (2014). Crossref
  5. E. Akman, A. Demir, T. Canel, and T. Sınmazçelik, J. Mater. Process. Technol., 209: 3705 (2009). Crossref
  6. J. E. Blackburn, C. M. Allen, P. A. Hilton, L. Li, M. I. Hoque, and K. H. Khan, Sci. Technol. Weld Joining, 15: 433 (2010). Crossref
  7. S. Zhao, G. Yu, H. Xiuli, and H. Yaowu, J. Mater. Process. Technol., 212: 1520 (2012). Crossref
  8. A. Gursel, Düzce University J. Sci. Technol., 3: 210 (2015).
  9. Y. F. Tzeng, Int. J. Adv. Manuf. Technol., 16: 10 (2000). Crossref
  10. Y. F. Tzeng, J. Mater. Process. Technol., 102: 40 (2000). Crossref
  11. J. Weldingh and J. K. Kristensen, Proc. of 8th NOLAMP Conference (Copenhagen, Denmark, 13–15 August 2001).
  12. T. Y. Kuo and S. L. Jeng, J. Phys. D: Appl. Phys., 38: 722 (2005). Crossref
  13. S. Sundaresan and R. G. D. Janaki, Sci. Technol. Weld. Join., 4: 151 (1999). Crossref
  14. Q. Yunlian, D. Ju, H. Quan, and Z. Liying, Mater. Sci. Eng. A, 280: 177 (2000). Crossref
  15. P. Wanjara, M. Brochu, and M. Jahazi, Mater. Manuf. Proc., 21: 439 (2006). Crossref
  16. V. C. Kumar, Surf. Coat. Technol., 201: 3174 (2006). Crossref