Effect of Mechanical Activation of Highly Disperse SiO$_{2}$/$\alpha$-Fe$_{2}$O$_{3}$ Mixtures on Distribution of Valence Electrons

Ya. V. Zaulychnyy$^{1}$, V. M. Gun’ko$^{2}$, Y. V. Yavorskyi$^{1}$, V. I. Zarko$^{2}$, S. S. Piotrowska$^{3}$, V. M. Mishchenko$^{2}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$O.O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
$^{3}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 03.03.2015. Download: PDF

The crystal and electronic structures of SiO$_{2}$/$\alpha$-Fe$_{2}$O$_{3}$ mixtures are analysed using X-ray diffraction and ultra-soft X-ray emission spectroscopy. The energy redistributions of the Fesрd, Sisp, and Op valence electrons due to changes in the mass ratio (20/80, 50/50, 80/20) of SiO$_{2}$ and $\alpha$-Fe$_{2}$O$_{3}$ in the mixtures are studied. The ultra-soft FeL$_{\alpha}$, SiL$_{\alpha}$, and OK$_{\alpha}$ X-ray emission spectra of SiO$_{2}$/$\alpha$-Fe$_{2}$O$_{3}$ mixtures are compared with those of individual iron oxide and silica powders. Interatomic interactions of surface atoms of adjacent particles occur owing to high local pressures and temperatures under mechanical treatment of the composition. Electrons’ transfer from silicon cations to oxygen anions is observed as a result of the mechanical activation of SiO$_{2}$/$\alpha$-Fe$_{2}$O$_{3}$ mixtures.

Key words: hematite, nanosilica, electronic structure, ultra-soft X-ray emission spectroscopy, X-ray diffraction.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i08/1063.html

DOI: https://doi.org/10.15407/mfint.37.08.1063

PACS: 61.43.Gt, 71.20.Ps, 71.23.-k, 73.20.At, 78.70.En, 81.20.Wk, 82.80.Ej

Citation: Ya. V. Zaulychnyy, V. M. Gun’ko, Y. V. Yavorskyi, V. I. Zarko, S. S. Piotrowska, and V. M. Mishchenko, Effect of Mechanical Activation of Highly Disperse SiO$_{2}$/$\alpha$-Fe$_{2}$O$_{3}$ Mixtures on Distribution of Valence Electrons, Metallofiz. Noveishie Tekhnol., 37, No. 8: 1063—1075 (2015)

  1. X. X. Yu, S. W. Liu, and J. G. Yu, Appl. Catal. B, 104: 12 (2011). Crossref
  2. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačič, and I. Celanovic, Energy Environ. Sci., 5: 8815 (2012). Crossref
  3. T. Ding, K. Song, K. Clays, and C. H. Tung, Adv. Mater., 21: 1936 (2009). Crossref
  4. Ya. V. Zaulychnyy, Yu. M. Solonin, O. O. Foya, O. Yu. Khyzhun, and O. Vasylkiv, Metallofiz. Noveishie Tekhnol., 30, No. 2: 169 (2008).
  5. R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc., 81: 2549 (1998). Crossref
  6. Sh.-D. Mo, W. Y. Ching, and R. H. French, J. Phys. D: Appl. Phys., 29: 1761 (1996). Crossref
  7. Y. Matsumoto, U. Unal, N. Tanaka, Ak. Kudo, and H. Kato, J. Solid State Chem., 177: 4205 (2004). Crossref
  8. E. P. Reddy, L. Davydov, and P. G. Smirniotis, J. Phys. Chem. B, 106: 3394 (2002). Crossref
  9. F. Gracia, J. P. Holgado, A. Caballero, and A. R. Gonzalez-Elipe, J. Phys. Chem. B, 108: 17466 (2004). Crossref
  10. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, J. Phys. Chem. B, 108: 1230 (2004). Crossref
  11. Ya. V. Zaulychnyj, O. O. Foya, V. M. Gun'ko, V. I. Zarko, I. F. Myronyuk, T. V. Gergel, and V. L. Chelyadyn, Physics and Chemistry of Solid State, 9: 767 (2008).
  12. P. Picozzi, Solid State Commun., 95: 313 (1995). Crossref
  13. T. Guerlin, H. Sauer, W. Engel, and E. Zeitler, phys. status solidi (a), 150: 153 (1995). Crossref
  14. F. Bart, F. Jollet, J. P. Duraud, and L. Douillard, phys. status solidi (b), 176: 163 (1993). Crossref
  15. F. Bart, M. Gautier, F. Jollet, and J. P. Duraud, Surf. Sci., 306: 342 (1994). Crossref
  16. B. Gilbert, B. H. Frazer, F. Naab, and J. Fournelle, Am. Min., 88: 763 (2003).
  17. A. Shulakov, A. Brajko, S. Bukin, and V. Drozd, Phys. Solid State, 46: 1868 (2004). Crossref
  18. G. Rollmann, A. Rohrbach, P. Entel, and J. Hafner, Phys. Rev. B, 69: 1651071 (2004). Crossref
  19. J. O. Artman, J. C. Murphy, and S. Poner, Phys. Rev., 138: 912 (1965). Crossref
  20. L. Armelaoy, M. Bettinelliz, M. Casariny, G. Granozziy, E. Tondelloy, and A. Vittadini, J. Phys.: Condens. Matter, 7: 299 (1995). Crossref
  21. I. S. Jacobs, R. A. Beyerlein, S. Poner, and J. P. Remeyka, Int. J. Magnetism, 1: 193 (1971).
  22. P. Canepa, E. Schofield, A. V. Chadwick, and M. Alfredsson, Phys. Chem. Chem. Phys., 13: 12826 (2011). Crossref
  23. J.-F. Lin, J. S. Tse, E. E. Alp, J. Zhao, M. Lerche, W. Sturhahn, Y. Xiao, and P. Chow, Phys. Rev. B, 84: 064424 (2011). Crossref
  24. D. A. Donatti, A. Ibanez Ruiz, and D. R. Vollet, J. Non-Cryst. Solids, 351: 1226 (2005). Crossref
  25. V. M. Gun'ko, V. Ya. Ilkiv, Ya. V. Zaulychnyy, V. I. Zarko, E. M. Pakhlov, and M. V. Karpetz, J. Non-Cryst. Solids, 403: 30 (2014). Crossref
  26. B. Gilbert, B. H. Frazer, F. Naab, J. Fournelle, J. W. Valley, and G. De Stasio, Am. Min., 88: 763 (2003).
  27. H. Yang, W. Mi, H. Bai, and Y. Cheng, RSC Adv., 2: 10708 (2012).