Quasi-Classical and Quantum Charge Transfers in Polycrystalline $\alpha$-Mn Films of Nanometre Thickness

R. I. Bihun$^{1}$, M. D. Buchkovska$^{1}$, V. M. Gavrylyukh$^{1}$, Z. V. Stasyuk$^{1}$, D. S. Leonov$^{2}$

$^{1}$Ivan Franko National University of Lviv, 1 Universytetska Str., UA-79000 Lviv, Ukraine
$^{2}$Technical Centre, NAS of Ukraine, 13 Pokrovs’ka Str., 04070 Kyiv, Ukraine

Received: 14.08.2015. Download: PDF

Conductivity—thickness dependences in quenched condensed ultra-thin manganese films are quantitatively described within the scope of the quasi-classical and quantum size-effect theories. Thin $\alpha$-Mn films are prepared and investigated under ultra-high vacuum conditions. The films are deposited on glass substrate and on glass substrate precovered with germanium underlayer with mass thicknesses of up to 3 nm. The experimental data are in a good agreement with the theoretical calculations, which took into account the peculiarities of the metal-films’ structure and the film surface morphology. Electron-transport parameters of thin films are calculated.

Key words: thin metallic films, surface and grain boundary scattering, semiconductor sublayers of subatomic thickness.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i09/1203.html

DOI: https://doi.org/10.15407/mfint.37.09.1203

PACS: 72.10.Fk, 73.23.Ad, 73.25.+i, 73.50.Bk, 73.61.At, 81.15.Kk, 85.40.Xx

Citation: R. I. Bihun, M. D. Buchkovska, V. M. Gavrylyukh, Z. V. Stasyuk, and D. S. Leonov, Quasi-Classical and Quantum Charge Transfers in Polycrystalline $\alpha$-Mn Films of Nanometre Thickness, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1203—1214 (2015) (in Ukrainian)


REFERENCES
  1. F. Boakye, J. Non-Crystalline Solids, 249: 189 (1999). Crossref
  2. A. H. Ammar, Physica B, 225: 132 (1996). Crossref
  3. F. Boakye and A. D. C. Grassie, Thin Solid Films, 221: 224 (1992). Crossref
  4. A. P. Shpak, R. I. Bigun, Z. V. Stasyuk, and Yu. A. Kunitsky, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 2: 339 (2010) (in Ukrainian).
  5. M. D. Buchkovska, R. I. Bihun, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 35, No. 12: 1659 (2013) (in Ukrainian).
  6. C. R. Grovenor, H. T. Hentzell, and D. A. Smith, Acta Metall., 32, No. 5: 773 (1984). Crossref
  7. K. L. Ekinci and J. M. Valles, Acta Metall., 46, No. 13: 4549 (1998).
  8. R. I. Bigun, V. M. Gavrylyukh, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 37, No. 3: 317 (2015) (in Ukrainian). Crossref
  9. Z. Stasyuk, J. Phys. Stud., 3: 102 (1999).
  10. Z. V. Stasyuk and A. I. Lopatyns'kyy, Fizyka i Khimiya Tverdoho Tila, 2, No. 4: 521 (2001) (in Ukrainian).
  11. R. I. Bigun, M. D. Buchkovs'ka, V. M. Gavrylyukh, Ya. A. Pastyrs'kyy, and Z. V. Stasyuk, Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 1: 75 (2015) (in Ukrainian).
  12. Z. Tesanovic, M. Jaric, and S. Maekawa, Phys. Rev. B, 57, No. 21: 2760 (1986). Crossref
  13. Z. Tesanovic, Solid State Phys., 20, No. 6: L829 (1987). Crossref
  14. N. Trivedi and N. Ashcroft, Phys. Rev. B, 38, No. 17: 12298 (1988). Crossref
  15. G. Fishman and D. Calecki, Phys. Rev. Lett., 62, No. 11: 1302 (1989). Crossref
  16. G. Fishman and D. Calecki, Phys. Rev. B, 43, No. 14: 11581 (1991). Crossref
  17. L. Sheng, D. Xing, and Z. Wang, Phys. Rev. B, 51, No. 11: 7325 (1995). Crossref
  18. R. Munoz, G. Vida, G. Kremer, L. Moraga, and C. Arenas, J. Phys.: Condensed Matter, 11: 299 (1999). Crossref
  19. R. Munoz, A. Concha, F. Mora, and R. Espejo, Phys. Rev. B, 61, No. 7: 4514 (2000). Crossref
  20. R. I. Bihun and Z. V. Stasyuk, Metallofiz. Noveishie Tekhnol., 36, No. 6: 723 (2014) (in Ukrainian). Crossref