AFM Study of Surface of the Metallic Condensates on the Monocrystalline Silicon and Energy Parameters of Interface Interactions in the ‘Metallic Condensate— Semiconductor’ System

B. P. Koman$^{1}$, I. M. Rovetskiy$^{1}$, V. M. Yuzevych$^{2}$

$^{1}$Ivan Franko National University of Lviv, 1 Universytetska Str., UA-79000 Lviv, Ukraine
$^{2}$Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova Str., 79060 Lviv, Ukraine

Received: 15.07.2015. Download: PDF

In this paper, the results of atomic force microscopy are used to investigate the surface topology and structure of condensates of copper, aluminium, and chromium on the (111) plane of monocrystalline silicon substrates with the characteristic thicknesses d: 2.5, 10, 50, and 100 nm. A cluster statistical analysis of obtained condensates’ surface is performed by means of the Hoshen—Kopelman algorithm; the character geometric parameters of cluster nanoformations are determined. For studied metals, the energy parameters of interphase interactions in the ‘metallic condensate—silicon’ system, such as energy of interface interaction, interfacial tension, adhesive bond energy and the work of adhesion, are estimated using macroscopic approach based on the relations of the surface non-equilibrium thermodynamics and physics. Differences in the morphology of metallic condensates on silicon are substantiated.

Key words: condensates, films, substrate, morphology, interphase interactions, energy parameters.



PACS: 68.35.Ct, 68.35.Gy, 68.35.Md, 68.35.Np, 68.37.Ps, 68.55.J-, 81.15.Gh

Citation: B. P. Koman, I. M. Rovetskiy, and V. M. Yuzevych, AFM Study of Surface of the Metallic Condensates on the Monocrystalline Silicon and Energy Parameters of Interface Interactions in the ‘Metallic Condensate— Semiconductor’ System, Metallofiz. Noveishie Tekhnol., 37, No. 11: 1443—1460 (2015) (in Ukrainian)

  1. J. Hoshen and R. Kopelman, Phys. Rev. B, 14, No. 8: 3438 (1976). Crossref
  2. V. M. Yuzevych and B. P. Koman, Metallofiz. Noveishie Technol., 25, No. 6: 747 (2003) (in Ukrainian).
  3. V. M. Yuzevich, Poverkhnost'. Fizika, Khimiya, Mekhanika [Surface. Physics, Chemistry, Mechanics], 9: 135 (1988) (in Russian).
  4. J. Horiuti and T. Toya, Chemisorbed Hydrogen (Surface Properties of Solids) (Moscow: Mir: 1972) (Russian translation).
  5. N. Eustathopoulus and J.-C. Joud, Curr. Top. Mater. Sci., 4: 281 (1980).
  6. N. D. Lang and W. Kohn, Phys. Rev. B, 1: 4555 (1970). Crossref
  7. M. B. Partenskii, Uspekhi Fizicheskikh Nauk, 128: 69 (1979) (in Russian). Crossref
  8. K. A. Bynkov, V. S. Kim, and V. M. Kuznetsov, Poverkhnostnaya Energiya GTsK-Metallov (Tomsk: 1989) (Prepr./SO AN SSSR, Tomsk. Nauch. Tsentr, No. 48, 1989) (in Russian).
  9. M. V. Musokhranov, Tekhnologicheskoe Obespechenie Kachestva Poverkhnostnogo Sloya Napravlyayushchikh Elementov Mashinostroeniya (Autoref. Dis. ... Cand. Techn. Sci.) (Moscow: Metallurgy Institute AN RF: 2006) (in Russian).
  10. C. Herring, Surface Tension as a Motivation for Sintering, in Physics of Powder Metallurgy (Ed. W. E. Kingston) (New York: McGraw-Hill: 1951).
  11. V. M. Yuzevich, Termodinamika Neobratimykh Protsessov (Moscow: Nauka: 1992), p. 163 (in Russian).
  12. M. Alden, S. Mirbt, H. L. Skriver, N. M. Rosengaard, and B. Johansson, Phys. Rev. B, 46, No. 10: 6303 (1992). Crossref
  13. R. J. Jaccodine, J. Electrochem. Soc., 110, No. 6: 524 (1963). Crossref
  14. Tablitsy Fizicheskikh Velichin: Spravochnik (Moscow: Atomizdat: 1972) (in Russian).
  15. Ch. Kittel, Vvedenie v Fiziku Tverdogo Tela [Introduction to Solid State Physics] (Moscow: Nauka: 1978) (Russian translation).
  16. W. B. Chung, K. Nogi, W. A. Miller, and A. McLean, Mater. Trans. JIM, 33: 753 (1992). Crossref
  17. L. Pauling, Priroda Khimicheskoy Svyazi [The Nature of the Chemical Bond] (Moscow–Leningrad: Goskhimizdat: 1947) (Russian translation).
  18. B. P. Koman and V. N. Yuzevich, Fizika Tverdogo Tela, 54, Iss. 7: 1335 (2012) (in Russian).
  19. A. A. Alekseev, Trudy Instituta Obshchey Fiziki Imeni A. M. Prokhorova, 66: 156 (2010) (in Russian).