Formation of Amorphous State in Bulk Samples of the Iron-Based Multicomponent Alloys

V. K. Nosenko$^{1}$, О. Yu. Rudenko$^{1}$, T. N. Moiseeva$^{2}$, V. V. Maksimov$^{2}$, M. S. Nizameyev$^{1}$, A. I. Limanovskii$^{2}$, O. M. Semyrga$^{1}$, V. I. Tkatch$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 07.09.2015. Download: PDF

The glass-forming ability (GFA) of a number of the new multicomponent Fe-based alloys and their mechanical properties are investigated by X-ray diffractometry, differential scanning calorimetry, and microhardness measurements. The Fe$_{69}$Mn$_{1}$Mo$_{4}$Cr$_{2}$C$_{7}$P$_{10}$B$_{5}$Si$_{2}$ and Fe$_{55}$Ni$_{8}$Co$_{6}$Mo$_{4}$Cr$_{2}$V$_{1}$Al$_{2}$P$_{9}$C$_{6}$B$_{5}$Si$_{2}$ alloys are obtained in amorphous state by copper mould casting in plates with thickness of 0.5 and 2 mm, respectively, while crystallization of the Fe$_{50.0}$Ni$_{19.0}$Cr$_{6.5}$Мо$_{1.5}$V$_{1}$B$_{14.1}$С$_{2.5}$Р$_{4.4}$Si$_{1}$ alloy is suppressed only in thin ribbons produced by the melt-spinning processing. The GFA analysis is carried out in terms of the known thermodynamic criteria based on the values of temperatures of glass transition ($T_{g}$), onset crystallization ($T_{ons}$), and liquidus ($T_{l}$). As found, the critical cooling rates required for bulk amorphization of first two alloys predicted by the criterion of $\gamma_{m} = (2T_{ons} - T_{g})/T_{l}$ (1.01$\cdot$10$^{3}$ and 262 K/s, respectively) are in a good agreement with those (3150 и 303 K/s) estimated from the empirical ‘cooling rate—thickness’ relation. The investigated Fe-based bulk metallic glasses, whose chemical compositions may be formed using industrial raw materials, have a relatively high strength (up to 3.5 GPa) and are of interest from an application point of view.

Key words: Fe-based bulk metallic glasses, glass-forming ability, crystallization behaviour, microhardness.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i12/1681.html

DOI: https://doi.org/10.15407/mfint.37.12.1681

PACS: 61.43.Dq, 62.20.Qp, 64.70.dg, 64.70.pe, 81.05.Kf, 81.07.Bc, 81.70.Pg

Citation: V. K. Nosenko, О. Yu. Rudenko, T. N. Moiseeva, V. V. Maksimov, M. S. Nizameyev, A. I. Limanovskii, O. M. Semyrga, and V. I. Tkatch, Formation of Amorphous State in Bulk Samples of the Iron-Based Multicomponent Alloys, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1681—1701 (2015) (in Russian)


REFERENCES
  1. W. Klement, R. H. Willens, and P. Duwez, Nature, 187: 869 (1960). Crossref
  2. H. Warlimont, Mater. Sci. Eng. A, 304–306: 61 (2001). Crossref
  3. D. Raskin and C. H. Smith, Amorphous Metallic Alloys (Ed. F. E. Luborsky) (London: Butterworths: 1983), p. 381. Crossref
  4. M. F. Ashby and A. L. Greer, Scripta Mater., 54: 321 (2006). Crossref
  5. H. Gleiter, Acta Mater., 56: 5875 (2008). Crossref
  6. Yu. K. Kovneristyy, E. K. Osipov, and E. A. Trofimova, Fiziko-Khimicheskie Osnovy Sozdaniya Amorfnykh Metallicheskikh Splavov [Physical and Chemical Bases of Creation of Amorphous Metal Alloys] (Moscow: Nauka: 1983) (in Russian).
  7. A. Inoue, Acta Mater., 48: 279 (2000). Crossref
  8. J. Schroers, Adv. Mater., 22: 1566 (2010). Crossref
  9. A. Inoue, Y. Shinohara, and J. S. Gook, Mater. Trans., 36: 1427 (1995).
  10. T. D. Shen and R. B. Schwartz, Appl. Phys. Lett., 75: 49 (1999). Crossref
  11. V. Ponnambalam, S. J. Poon, G. J. Shiflet, V. M. Keppens, R. Taylor, and G. Petculescu, Appl. Phys. Lett., 83: 1131 (2003). Crossref
  12. Z. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, Phys. Rev. Lett., 92: 245503 (2004). Crossref
  13. A. Inoue, B. L. Shen, and C. T. Chang, Intermetallics, 14: 936 (2006). Crossref
  14. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater., 50: 489 (2002). Crossref
  15. V. Ponnambalam, S. J. Poon, and G. J. Shiflet, J. Mater. Res., 19: 1320 (2004). Crossref
  16. J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang, Appl. Phys. Lett., 86: 151907 (2005). Crossref
  17. Z. B. Jiao, H. X. Li, J. E. Gao, Y. Wu, and Z. P. Lu, Intermetallics, 19: 1502 (2011). Crossref
  18. H. X. Li, S. L. Wang, S. Yi, Z. B. Jiao, Y. Wu, and Z. P. Lu, J. Magn. Magn. Mater., 321: 2833 (2009). Crossref
  19. H. Li, S. Yi, and H. S. Sohn, J. Mater. Res., 22: 164 (2007). Crossref
  20. H. X. Li, K. B. Kim, and S. Yi, Scripta Mater., 56: 1035 (2007). Crossref
  21. H. X. Li, H. Y. Jung, and S. Yi, J. Magn. Magn. Mater., 320: 241 (2008). Crossref
  22. Ya. S. Umanskiy, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya [Crystallography, X-Ray and Electron Microscopy] (Moscow: Metallurgiya: 1982) (in Russian).
  23. J. Fornell, S. Gonsales, E. Rossinyol, S. Surinach, M. D. Baró, D. V. Louzguine-Luzgin, J. H. Perepezko, J. Sort, and A. Inoue, Acta Mater., 58, Iss. 19: 6256 (2010). Crossref
  24. A. Inoue, Acta Mater., 48: 279 (2000). Crossref
  25. G. E. Abrosimova, A. S. Aronin, Yu. V. Kir'janov, D. V. Matveev, V. V. Molokanov, and I. I. Zver'kova, J. Non-Cryst. Solids, 288: 121 (2001). Crossref
  26. A. L. Greer, Acta Metallurgica, 30: 171 (1982). Crossref
  27. R. C. Ruhl, Mater. Sci. Eng., 1: 313 (1967). Crossref
  28. V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, and S. G. Rassolov, Mater. Sci. Eng. A, 323: 91 (2002). Crossref
  29. A. B. Lysenko, G. V. Borisova, and O. L. Kravets, Fizika i Tekhnika Vysokikh Davleniy, 14: 44 (2004) (in Russian).
  30. A. Inoue and A. Takeuchi, Mater. Trans., 43: 1892 (2002). Crossref
  31. D. Turnbull, Contemp. Phys., 10: 473 (1969). Crossref
  32. Z. P. Lu and C. T. Liu, Acta Mater., 50: 3501 (2002). Crossref
  33. Sh. Guo, Z. P. Lu, and C. T. Liu, Intermetallics, 18: 883 (2010). Crossref
  34. X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, J. Appl. Phys., 101: 086108 (2007). Crossref