Loading [MathJax]/jax/output/HTML-CSS/jax.js

Formation of Amorphous State in Bulk Samples of the Iron-Based Multicomponent Alloys

V. K. Nosenko1, О. Yu. Rudenko1, T. N. Moiseeva2, V. V. Maksimov2, M. S. Nizameyev1, A. I. Limanovskii2, O. M. Semyrga1, V. I. Tkatch2

1G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
2Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 07.09.2015. Download: PDF

The glass-forming ability (GFA) of a number of the new multicomponent Fe-based alloys and their mechanical properties are investigated by X-ray diffractometry, differential scanning calorimetry, and microhardness measurements. The Fe69Mn1Mo4Cr2C7P10B5Si2 and Fe55Ni8Co6Mo4Cr2V1Al2P9C6B5Si2 alloys are obtained in amorphous state by copper mould casting in plates with thickness of 0.5 and 2 mm, respectively, while crystallization of the Fe50.0Ni19.0Cr6.5Мо1.5V1B14.1С2.5Р4.4Si1 alloy is suppressed only in thin ribbons produced by the melt-spinning processing. The GFA analysis is carried out in terms of the known thermodynamic criteria based on the values of temperatures of glass transition (Tg), onset crystallization (Tons), and liquidus (Tl). As found, the critical cooling rates required for bulk amorphization of first two alloys predicted by the criterion of γm=(2TonsTg)/Tl (1.01103 and 262 K/s, respectively) are in a good agreement with those (3150 и 303 K/s) estimated from the empirical ‘cooling rate—thickness’ relation. The investigated Fe-based bulk metallic glasses, whose chemical compositions may be formed using industrial raw materials, have a relatively high strength (up to 3.5 GPa) and are of interest from an application point of view.

Key words: Fe-based bulk metallic glasses, glass-forming ability, crystallization behaviour, microhardness.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i12/1681.html

DOI: https://doi.org/10.15407/mfint.37.12.1681

PACS: 61.43.Dq, 62.20.Qp, 64.70.dg, 64.70.pe, 81.05.Kf, 81.07.Bc, 81.70.Pg

Citation: V. K. Nosenko, О. Yu. Rudenko, T. N. Moiseeva, V. V. Maksimov, M. S. Nizameyev, A. I. Limanovskii, O. M. Semyrga, and V. I. Tkatch, Formation of Amorphous State in Bulk Samples of the Iron-Based Multicomponent Alloys, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1681—1701 (2015) (in Russian)


REFERENCES
  1. W. Klement, R. H. Willens, and P. Duwez, Nature, 187: 869 (1960). Crossref
  2. H. Warlimont, Mater. Sci. Eng. A, 304–306: 61 (2001). Crossref
  3. D. Raskin and C. H. Smith, Amorphous Metallic Alloys (Ed. F. E. Luborsky) (London: Butterworths: 1983), p. 381. Crossref
  4. M. F. Ashby and A. L. Greer, Scripta Mater., 54: 321 (2006). Crossref
  5. H. Gleiter, Acta Mater., 56: 5875 (2008). Crossref
  6. Yu. K. Kovneristyy, E. K. Osipov, and E. A. Trofimova, Fiziko-Khimicheskie Osnovy Sozdaniya Amorfnykh Metallicheskikh Splavov [Physical and Chemical Bases of Creation of Amorphous Metal Alloys] (Moscow: Nauka: 1983) (in Russian).
  7. A. Inoue, Acta Mater., 48: 279 (2000). Crossref
  8. J. Schroers, Adv. Mater., 22: 1566 (2010). Crossref
  9. A. Inoue, Y. Shinohara, and J. S. Gook, Mater. Trans., 36: 1427 (1995).
  10. T. D. Shen and R. B. Schwartz, Appl. Phys. Lett., 75: 49 (1999). Crossref
  11. V. Ponnambalam, S. J. Poon, G. J. Shiflet, V. M. Keppens, R. Taylor, and G. Petculescu, Appl. Phys. Lett., 83: 1131 (2003). Crossref
  12. Z. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, Phys. Rev. Lett., 92: 245503 (2004). Crossref
  13. A. Inoue, B. L. Shen, and C. T. Chang, Intermetallics, 14: 936 (2006). Crossref
  14. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater., 50: 489 (2002). Crossref
  15. V. Ponnambalam, S. J. Poon, and G. J. Shiflet, J. Mater. Res., 19: 1320 (2004). Crossref
  16. J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang, Appl. Phys. Lett., 86: 151907 (2005). Crossref
  17. Z. B. Jiao, H. X. Li, J. E. Gao, Y. Wu, and Z. P. Lu, Intermetallics, 19: 1502 (2011). Crossref
  18. H. X. Li, S. L. Wang, S. Yi, Z. B. Jiao, Y. Wu, and Z. P. Lu, J. Magn. Magn. Mater., 321: 2833 (2009). Crossref
  19. H. Li, S. Yi, and H. S. Sohn, J. Mater. Res., 22: 164 (2007). Crossref
  20. H. X. Li, K. B. Kim, and S. Yi, Scripta Mater., 56: 1035 (2007). Crossref
  21. H. X. Li, H. Y. Jung, and S. Yi, J. Magn. Magn. Mater., 320: 241 (2008). Crossref
  22. Ya. S. Umanskiy, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya [Crystallography, X-Ray and Electron Microscopy] (Moscow: Metallurgiya: 1982) (in Russian).
  23. J. Fornell, S. Gonsales, E. Rossinyol, S. Surinach, M. D. Baró, D. V. Louzguine-Luzgin, J. H. Perepezko, J. Sort, and A. Inoue, Acta Mater., 58, Iss. 19: 6256 (2010). Crossref
  24. A. Inoue, Acta Mater., 48: 279 (2000). Crossref
  25. G. E. Abrosimova, A. S. Aronin, Yu. V. Kir'janov, D. V. Matveev, V. V. Molokanov, and I. I. Zver'kova, J. Non-Cryst. Solids, 288: 121 (2001). Crossref
  26. A. L. Greer, Acta Metallurgica, 30: 171 (1982). Crossref
  27. R. C. Ruhl, Mater. Sci. Eng., 1: 313 (1967). Crossref
  28. V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, and S. G. Rassolov, Mater. Sci. Eng. A, 323: 91 (2002). Crossref
  29. A. B. Lysenko, G. V. Borisova, and O. L. Kravets, Fizika i Tekhnika Vysokikh Davleniy, 14: 44 (2004) (in Russian).
  30. A. Inoue and A. Takeuchi, Mater. Trans., 43: 1892 (2002). Crossref
  31. D. Turnbull, Contemp. Phys., 10: 473 (1969). Crossref
  32. Z. P. Lu and C. T. Liu, Acta Mater., 50: 3501 (2002). Crossref
  33. Sh. Guo, Z. P. Lu, and C. T. Liu, Intermetallics, 18: 883 (2010). Crossref
  34. X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, J. Appl. Phys., 101: 086108 (2007). Crossref