Effect of Nonuniform Magnetic Field on the Phase Transformations of Metal-Containing Polymer Composites

O. G. Medvedovska$^{1}$, A. D. Stadnik$^{1}$, G. K. Chepurnykh$^{2}$, S. V. Sokolov$^{3}$

$^{1}$Sumy State А.S. Makarenko Pedagogical University, 87 Romenska Str., 40002 Sumy, Ukraine
$^{2}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{3}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 22.06.2015; final version - 27.11.2015. Download: PDF

The dependence of the heat capacity on the temperature for crystals fabricated from powdered polymers with different content of fine iron is studied. As revealed, the temperature range, at which the phase transition associated with the melting of the crystals, essentially depends on both the rotating inhomogeneous magnetic field and the percentage content of fine iron. If the crystal is not metal-containing, the effects of inhomogeneous rotating magnetic field lead to a smearing of the phase transition, whereas, in the case of fine iron content of less than 5% of the original weight of the pure polymer, the effect of inhomogeneous magnetic field leads to a substantial reduction of the temperature range of the heat-capacity maximum, and the anomalously strong dependence of the heat capacity on the percentage content of fine iron is observed.

Key words: composites, heat capacity, phase transitions, magnetic field.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i12/1703.html

DOI: https://doi.org/10.15407/mfint.37.12.1703

PACS: 44.10.+i, 64.70.dj, 64.70.km, 65.40.Ba, 77.84.Lf, 81.05.Lg, 83.60.Np

Citation: O. G. Medvedovska, A. D. Stadnik, G. K. Chepurnykh, and S. V. Sokolov, Effect of Nonuniform Magnetic Field on the Phase Transformations of Metal-Containing Polymer Composites, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1703—1712 (2015) (in Russian)


REFERENCES
  1. L. Mandelkern, Kristallizatsiya Polimerov [Crystallization of Polymers] (Moscow–Leningrad: Khimiya: 1966) (Russian translation).
  2. N. A. Inogamov and Yu. V. Petrov, Zh. Eksp. Teor. Fiz., 137, No. 3: 505 (2010) (in Russian).
  3. A. V. Inyushchkin and A. N. Taldenkov, Zh. Eksp. Teor. Fiz., 138, No. 5: 862 (2010) (in Russian).
  4. S. I. Denisov, T. V. Lyutyy, and P. Hünggi, Phys. Rev. Let., 97: 227202 (2006). Crossref
  5. S. I. Denisov, K. Sakmann, P. Talner, and P. Hünggi, Phys. Rev. B, 75: 184432 (2007). Crossref
  6. L. P. Bulat, I. A. Drapkin, V. V. Karataev, V. B. Osvenskiy, and D. A. Pshenay-Severin, Fizika Tverdogo Tela, 52, No. 9: 1712 (2010) (in Russian).
  7. M. N. Levin and B. A. Zon, Zh. Eksp. Teor. Fiz., 111, No. 4: 1373 (1997) (in Russian).
  8. Yu. A. Osipyan, Yu. I. Golovin, D. V. Lopatin, R. B. Morshchinov, and S. Z. Shmurak, Pis'ma v Zh. Eksp. Teor. Fiz., 69, No. 2: 110 (1999) (in Russian).
  9. V. N. Bilyk, G. V. Kirik, O. G. Medvedovskaya, A. D. Stadnik, G. K. Chepurnykh, and S. V. Sokolov, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1641 (2014) (in Russian). Crossref
  10. J. M. Ziman, Elektrony i Fonony [Electrons and Phonons] (Moscow: Inostrannaya Literatura: 1962) (Russian translation).
  11. A. Misnar, Teploprovodnost' Tverdykh Tel, Zhidkostey, Gazov i Ikh Kompozitsiy [Thermal Conductivity of Solids, Liquids, Gases and Their Compositions] (Moscow: Mir: 1968) (Russian translation).
  12. L. D. Landau and E. M. Lifshitz, Statisticheskaya Fizika [Statistical Physics] (Moscow: Nauka: 1976), vol. 1 (in Russian).