Mössbauer Study of Nanoscale Fractions of the LiMn$_{2-х}$Fe$_{х}$O$_{4}$ Spinel Fabricated by Sol—Gel Method

B. K. Ostafiychuk$^{1}$, I. M. Budzulyak$^{1}$, T. Ya. Boychuk$^{1}$, R. V. Ilnytskiy$^{1}$, V. V. Moklyak$^{2}$, A. M. Boychuk$^{1}$

$^{1}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.05.2015; final version - 04.09.2015. Download: PDF

This work is concerned with the Mössbauer spectroscopic study of nanoscale powders of the LiMn$_{2-х}$Fe$_{х}$O$_{4}$ lithium—manganese spinel (х = 0.2, 0.5, 1.0) modified with iron ions. As found, the hematite phase is formed at the annealing temperature of 873 K independently of iron content, and its content is decreasing with increasing of the substitution degree. As shown, the annealing at 1073 K leads to formation of single-phase spinel structure with cations of divalent iron in octahedral sublattice. As proved, the destruction of hematite phase causes the increase of iron content in tetrahedral sites of spinel.

Key words: spinel, cationic substitution, cation distribution, phase composition, Mössbauer spectroscopy.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i12/1713.html

DOI: https://doi.org/10.15407/mfint.37.12.1713

PACS: 61.05.Qr, 61.46.Hk, 61.82.Rx, 76.80.+y, 81.07.Bc, 81.20.Fw, 81.70.Pg

Citation: B. K. Ostafiychuk, I. M. Budzulyak, T. Ya. Boychuk, R. V. Ilnytskiy, V. V. Moklyak, and A. M. Boychuk, Mössbauer Study of Nanoscale Fractions of the LiMn$_{2-х}$Fe$_{х}$O$_{4}$ Spinel Fabricated by Sol—Gel Method, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1713—1724 (2015) (in Ukrainian)


REFERENCES
  1. Y. Wang and Y. Xia, Electrochem. Commun., 7: 1138 (2005). Crossref
  2. G. Pell Wendy and E. Brian Conway, J. Power Sources, 136: 334 (2004). Crossref
  3. I. M. Gasyuk, Fizyka i Khimiya Tverdogo Tila, 12, No. 2: 275 (2011) (in Ukrainian).
  4. A. V. Potapenko, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2, No. 2: 175 (2011) (in Ukrainian).
  5. A. M. Bojchuk, V. V. Ugorchuk, T. Ya. Bojchuk, and M. I. Gasyuk, J. Nano- Electron. Phys., 5, No. 3: 03034 (2013) (in Ukrainian).
  6. B. K. Ostafijchuk, I. M. Budzulyak, and N. Ya. Ivanichok, Fizychna Inzheneriya Poverkhni, 10, No. 1: 72 (2012) (in Ukrainian).
  7. T. Ya. Bojchuk, I. M. Budzulyak, N. Ya. Ivanichok, R. P. Lisovs'kyj, and B. I. Rachij, J. Nano- Electron. Phys., 7, No. 1: 01019 (2015) (in Ukrainian).
  8. V. O. Sycheva and A. V. Churykov, Elektrokhimicheskaya Energetika, 9, No. 4: 175 (2009) (in Russian).
  9. V. M. Pylypiv, A. M. Bojchuk, P. O. Sulym, S. V. Vojtkiv, T. Ya. Bojchuk, and M. I. Gasyuk, Fizyka i Khimiya Tverdogo Tila, 15, No. 3: 350 (2014) (in Ukrainian).
  10. I. M. Gasyuk, A. M. Bojchuk, T. Ya. Bojchuk, I. P. Yaremij, L. S. Kajkan, and V. V. Ugorchuk, Fizychna Inzheneriya Poverkhni, 12, No. 4: 535 (2014) (in Ukrainian).
  11. O. V. Kopayev, Fizyka i Khimiya Tverdogo Tila, 9, No. 1: 58 (2008) (in Ukrainian).
  12. M. A. Gilleo, Ferromagnetic Materials (Ed. E. P. Wohlfarth) (Amsterdam: North-Holland: 1989), vol. 2, ch. 1.
  13. O. M. Leminea, M. Sajieddine, M. Bououdinac, R. Msalam, S. Mufti, and A. Alyamani, J. Alloys Compd., 502: 279 (2010). Crossref