Dynamics of Behaviour of the Droplet Phase in the Plasma Flows Formed in Discharge Gaps of Vacuum—Arc Discharges with Working Argon Gas

M. Ye. Svavil’nyi

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 24.03.2015. Download: PDF

This investigation attempts to consider the dynamics of cathode material microdroplets’ phase behaviour during vacuum-arc operation in the presence of passive working gas of argon. Using the multigrid electrostatic analyser technique, it is shown that both positively and negatively charged microparticles are present in plasma flows propagating from the cathode. The positive charge on microparticles is determined by their thermal emission. The evaporation intensity of freely flying droplets, which become positively charged, is mainly determined by both density and energy of ion flux on them and depends on the values of the plasma electron temperature in the discharge gap. For the calculation of drop evaporation rate, the value of explicit view of the energy distribution function for the singly and multiply charged ions in the flux along the trajectory of the drops, and initial values of the temperature and trajectories of microparticles, which leave cathode are required. Under very intensive energy flows on microdroplet, the presence of a gas—vapour target occurring around the drop during evaporation may cause a strong influence on the microdroplets’ evaporation rate.

Key words: cathodic vacuum-arc deposition, charge of drops, titanium films, microdroplet phase, ion distribution function, electrostatic analyser.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i02/0247.html

DOI: https://doi.org/10.15407/mfint.38.02.0247

PACS: 52.20.-j, 52.70.Nc, 52.77.Dq, 52.80.Yr, 68.55.Nq, 81.15.Gh

Citation: M. Ye. Svavil’nyi, Dynamics of Behaviour of the Droplet Phase in the Plasma Flows Formed in Discharge Gaps of Vacuum—Arc Discharges with Working Argon Gas, Metallofiz. Noveishie Tekhnol., 38, No. 2: 247—265 (2016) (in Russian)


REFERENCES
  1. I. I. Aksyonov, A. A. Andreyev, V. A. Belous, V. Ye. Strel'nitski, and V. M. Khoroshikh, Vakuumnaya Duga [The Vacuum Arc] (Kiev: Naukova Dumka: 2012) (in Russian)
  2. R. L. Boxman, P. J. Martin, and D. M. Sanders, Handbook of Vacuum Arc: Science and Technology (Park Ridge, NJ: Noyes Publ.: 1995)
  3. Handbook of Plasma Immersion Ion Implantation and Deposition (Eds. A. Anders and A. Willey) (New York: Interscience Publ.: 1995)
  4. I. I. Aksyonov, Vakuumnaya Duga v Erozionnykh Istochnikakh Plazmy [The Vacuum Arc in the Erosion Plasma Sources] (Kharkov: NSC 'KhPhTI': 2005) (in Russian)
  5. I. G. Kesayev, Katodnyye Protsessy Elektricheskoy Dugi [The Cathode Phenomena of the Vacuum Arc] (Moscow: Nauka: 1968) (in Russian)
  6. V. Ye. Panarin, Tekhnologii Remonta, Vosstanovleniya i Uprochneniya Detaley Mashin, Mekhanizmov, Oborudovaniya, Instrumenta i Tekhnologicheskoy Osnastki [The Technology for Repairs, Recovering and Strengthening of the Machines Component, Machinerys, Equipment, Instrument and Technological Tools] (Saint Petersburg: Izd-vo Politekhnicheskogo Un-ta: 2006), Pt. 1, p. 191 (in Russian)
  7. V. Ye. Panarin and Ye. V. Dabizha, Sverkhtverdye Materialy, No. 6: 41 (2001) (in Russian)
  8. A. I. Kuz'michov, Magnetronnye Raspylitelnye Sistemy [The Magnetron Sputtering Systems] (Kiev: Avers: 2008) (in Russian)
  9. I. I. Aksyonov, Vakuumno-Dugovyye Istochniki Filtrovannoy Plazmy: Istoriya, Teoriya, Praktika, Perspektivy [The Vacuum-Arc Sources of Filtered Plasma: History, Theory, Practice, Prospects] (Kharkov: NSC 'KhPhTI', Konstanta: 2003) (in Russian)
  10. M. Keidar, I. I. Beilis, R. Aharonov, D. Arbilly, R. L. Boxman, and S. Goldsmith, J. Phys. D: Appl. Phys., 30, No. 21: 2972 (1997) Crossref
  11. A. V. Yeletskiy, Usp. Fiz. Nauk, 172, No. 4: 401(2002) (in Russian) Crossref
  12. N. Ye. Svavil'nyi, V. Ye. Panarin, and A. I. Khominich, Inzhenernyy Zhurnal 'Nanotekhnika', 21, No. 1: 45 (2010) (in Russian)
  13. M. E. Svavilnyj, Metallofiz. Noveishie Tekhnol., 32, No. 11: 1485 (2010) (in Russian)
  14. N. I. Ionov, Zh. Tekh. Fiz., 34, No. 5: 769 (1964) (in Russian)
  15. L. I. Romanyuk and N. Ye. Svavil'nyi, Ukr. Fiz. Zhurn., 21, No. 6: 981 (1976) (in Russian)
  16. V. V. Kopyshinskyi, N. Ye. Svavil'nyi, V. F. Semenyuk, V. N. Khominich, and D. L. Chernolutskij, Tekhnologiya i Konstruirovanie Elektronnoy Apparatury, No. 1: 38 (1997) (in Russian)
  17. E. Erturk and H. J. Heuvel, Thin Solid Films,153, Nos. 1–3: 135 (1987) Crossref
  18. R. L. Boxman and S. Goldsmith, J. Appl. Phys., 52, No. 1: 151 (1981) Crossref
  19. Z. Cheng, M. Wang, and J. Zou, Surf. Coat. Technol., 92, Nos. 1–2: 50 (1997) Crossref
  20. F. Rysanek, R. L. Barton, and M. Keidar, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Sacramento, California: 2006), p. 4499
  21. M. Keidar, I. Beilis, R. L. Boxman, and S. Goldsmith, IEEE Trans. Plasma Sci., 24, No. 1: 226 (1996) Crossref
  22. M. Keidar, I. Beilis, R. L. Boxman, and S. Goldsmith, Surf. Coat. Technol., 86–87, Pt. 1: 415 (1996) Crossref
  23. V. V. Kunchenko, V. G. Padalka, and V. M. Khoroshikh, Zh. Tekh. Fiz., 54, No. 8: 1530 (1984) (in Russian)
  24. A. Engel, Ionizovannye Gazy [The Ionized Gases] (Moscow: GIFML: 1959) (in Russian)
  25. V. V. Plyutto, V. N. Ryzhkov, and A. T. Kapina, Zh. Eksp. Teor. Fiz., 47, No. 2: 494 (1964) (in Russian)
  26. I. B. Brown, Rev. Sci. Instr., 65, No. 10: 3061 (1994) Crossref
  27. W. D. Davis and H. C. Miller, J. Appl. Phys., 40, No. 5: 2212 (1969) Crossref
  28. M. D. Gabovich, Fizika i Tekhnika Plazmennykh Istochnikov Ionov [The Physics and Engineering of the Plasma Ions Sources] (Moscow: Atomizdat: 1972) (in Russian)
  29. I. K. Kikoin, Tablitsy Fizicheskikh Velichin [The Tables of Physical Quantities] (Moscow: Atomizdat: 1976) (in Russian)
  30. A. Myuller and V. P. Shevel'ko, Zh. Tekh. Fiz., 50, No. 5: 985 (1980) (in Russian)