The Dependence of Phase Composition of Previously Disproportionated SmCo$_{5}$-Based Alloy on Temperature and Duration of Recombination

I. I. Bulyk, А. М. Trostianchyn

Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine

Received: 26.09.2014. Download: PDF

The influence of recombination parameters on phase composition of previously disproportionated commercial ferromagnetic alloy KC37 (based on SmCo$_{5}$) is investigated by means of the differential thermal and X-ray diffraction analyses. The sequence of phase transitions, which precede recovery of initial phase composition, is established during recombination by heating to 550—950°C with exposure to 5 h. As shown, the heating of disproportionated products in vacuum to 550°C is accompanied by a partial disintegration of samarium hydride and formation of Sm$_{2}$Co$_{7}$ phase. Intermetallic Sm$_{2}$Co$_{7}$ and Sm$_{2}$Co$_{17}$ phases appear after vacuum treatment in the temperature range of 600—680°C. The proportion between these phases changes with increasing recombination temperature and exposure duration. As found, the recovery of SmCo$_{5}$ phase begins at 700°C, and its amount in the alloy gradually increases with temperature increasing.

Key words: ferromagnetic alloys, SmCo$_{5}$, hydrogen-initiated phase transformations, recombination, hydrogen technology.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i04/0509.html

DOI: https://doi.org/10.15407/mfint.38.04.0509

PACS: 61.05.cp, 64.70.kd, 75.50.Cc, 75.50.Tt, 75.50.Vv, 81.30.Mh, 88.30.rd

Citation: I. I. Bulyk and А. М. Trostianchyn, The Dependence of Phase Composition of Previously Disproportionated SmCo$_{5}$-Based Alloy on Temperature and Duration of Recombination, Metallofiz. Noveishie Tekhnol., 38, No. 4: 509—517 (2016) (in Ukrainian)


REFERENCES
  1. E. F. Kneller and R. Hawig, IEEE Trans. Magn., 27: 3588(1991). Crossref
  2. D. Goll and H. Kronmuller, Naturwissenschaften, 87: 423 (2000). Crossref
  3. J. Ding, P. G. McCormick, and R. Street, J. Magn. Magn. Mater., 124: 1 (1993). Crossref
  4. O. Donnell, C. Kuhrt, and J. M. D. Coey, J. Appl. Phys., 76: 7068 (1994). Crossref
  5. O. Gutfleisch, K. Khlopkov, A. Teresiak, K.-H. Müller, G. Drazic, C. Mishima, and Y. Honkura, IEEE Trans. Magn., 39: 2926 (2003). Crossref
  6. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostianchyn, Patent of Ukraine No. 96810 (2011) (in Ukrainian).
  7. M. Kubis, A. Handstein, B. Gebel, O. Gutfleisch, K.-H. Müller, and L. Schultz, J. Appl. Phys., 85: 5666 (1999). Crossref
  8. A. Handstein, M. Kubis, O. Gutfleisch, B. Gebel, and K.-H. Müller, J. Magn. Magn. Mater., 192: 73 (1999). Crossref
  9. I. I. Bulyk, A. M. Trostianchyn, and V. I. Markovych, Materials Science, 43, No. 1: 102 (2007). Crossref
  10. I. I. Bulyk, V. I. Markovych, and A. M. Trostianchyn, Materials Science, 44, No. 4: 602 (2008). Crossref
  11. I. I. Bulyk, A. M. Trostianchyn, and P. Ya. Lyutyy, Materials Science, 48, No. 3: 316 (2012). Crossref
  12. I. I. Bulyk, R. V. Denys, V. V. Panasyuk, Y. H. Putilov, and A. M. Trostyanchyn, Materials Science, 37, No. 4: 544 (2001). Crossref
  13. http://www.ccp14.ac.uk
  14. http://www.ill.eu/sites/fullprof