Influence of Titanium Content on Interaction Parameters in the Sm$_{2}$Co$_{17-x}$Ti$_{x}$—Н$_{2}$ (x = 1.7; 0.95; 0.5; 0.2; 0.1)

I. I. Bulyk, M. V. Pylat

Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine

Received: 13.10.2014; final version - 13.04.2015. Download: PDF

Phase transformations in Sm$_{2}$Co$_{17-x}$Ti$_{x}$—Н$_{2}$ (x = 0.1, 0.2, 0.5, 0.95 and 1.7) system are investigated by means of the differential thermal (DTA) and X-ray phase analyses during conventional and solid hydrogenation, disproportionation, desorption, recombination (HDDR) treatment under hydrogen pressure of 3.0—5.2 МPа and temperature up to 950°C. The increase of titanium content leads to the increasing stability of initial ferromagnetic phase with Th$_{2}$Zn$_{17}$-type structure. At х = 0.1 and 0.2, the initial compound completely disproportionates into samarium hydride and cobalt. The partial disproportionation occurs at titanium content х = 0.5. They are found recombined Th$_{2}$Zn$_{17}$-type structure phase, cobalt and traces of samarium oxide after recombination at 850°C in alloys with х = 0.1, 0.2 and 0.5.

Key words: magnetic materials, titanium, alloying, hydrogenation, disproportionation, desorption, recombination, phase transformation.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i05/0697.html

DOI: https://doi.org/10.15407/mfint.38.05.0697

PACS: 61.05.cp, 64.70.kd, 64.70.Nd, 75.30.Gw, 75.50.Cc, 75.50.Ww, 81.07.Bc

Citation: I. I. Bulyk and M. V. Pylat, Influence of Titanium Content on Interaction Parameters in the Sm$_{2}$Co$_{17-x}$Ti$_{x}$—Н$_{2}$ (x = 1.7; 0.95; 0.5; 0.2; 0.1), Metallofiz. Noveishie Tekhnol., 38, No. 5: 697—707 (2016) (in Ukrainian)


REFERENCES
  1. I. I. Bulyk and V. V. Panasyuk, Fiz.-Khim. Mekhanika Materialiv, No. 1: 9 (2012) (in Ukrainian).
  2. I. I. Bulyk, V. N. Varyukhin, V. Yu. Tarenkov, V. V. Burkhovetskyi, and S. L. Sidorov, Fizika i Tekhnika Vysokikh Davleniy, 23, No. 4: 67 (2013) (in Russian).
  3. I. I. Bulyk, Yu. B. Basaraba, and A. M. Trostianchyn, Fiz.-Khim. Mekhanika Materialiv, No. 6: 67 (2004) (in Ukrainian).
  4. I. I. Bulyk, P. V. Denys, V. V. Panasyuk, Yu. G. Putilov, and A. M. Trostianchyn, Fiz.-Khim. Mekhanika Materialiv, 37, No. 4: 15 (2001) (in Ukrainian).
  5. I. I. Bulyk, Yu. B. Basaraba, A. M. Trostianchyn, and V. M. Davydov, Fiz.-Khim. Mekhanika Materialiv, No. 3: 101 (2005) (in Ukrainian).
  6. http://www.ccp14.ac.uk/
  7. http://www.ill.eu/sites/fullprof
  8. I. I. Bulyk and P. Ya. Lyutyy, Metallofiz. Noveishie Tekhnol., 35, No. 9: 1283 (2013) (in Ukrainian).
  9. I. I. Bulyk, P. Ya. Lyutyy, and A. M. Trostianchyn, Metallofiz. Noveishie Tekhnol., 33, No. 6: 807 (2011) (in Ukrainian).
  10. I. I. Bulyk, A. M. Trostianchyn, P. Ya. Lyutyy, and V. V. Burkhovetskyi, Poroshkovaya Metallurgiya, Nos. 9/10: 56 (2013) (in Ukrainian).
  11. W. Wang, Y. Yan, and H. Jin, Physica B, 328: 372 (2003). Crossref