Effect of Decrease in a Threshold of Percolation in Ultrathin Films of Silver at Quasi-Equilibrium Condensation and Action of Plasma on a Growth Surface

Yu. O. Kosminska, V. I. Perekrestov, I. V. Zagaiko

Sumy State University, 2 Rymskogo-Korsakova Str., 40000 Sumy, Ukraine

Received: 08.07.2016. Download: PDF

Regularities of structure formation of ultrathin silver films are studied for several types of substrates such as KCl cleaved facets and KCl cleaved facets covered with polymer layer of PC403 or ma-N405. An effect equivalent to percolation threshold decrease is observed. It is a consequence of using the deposition technique, at which low-temperature plasma acts directly onto growth surface and vapours are condensed under conditions close to thermodynamical equilibrium. Based on transmission electron microscopy and electron diffraction studies, it is found that origination of film occurs through formation of ultrathin amorphous layer followed by gradual transition of it to polycrystalline state or to initiation and growth unconnected bulk crystals during subsequent deposition.

Key words: silver films, percolation, nucleation, amorphous phase, magnetron sputtering, plasma.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i08/1103.html

DOI: https://doi.org/10.15407/mfint.38.08.1103

PACS: 61.72.Ff, 64.60.ah, 68.37.Lp, 68.43.Mn, 68.47.De, 68.55.A-, 68.55.J-, 81.15.Cd

Citation: Yu. O. Kosminska, V. I. Perekrestov, and I. V. Zagaiko, Effect of Decrease in a Threshold of Percolation in Ultrathin Films of Silver at Quasi-Equilibrium Condensation and Action of Plasma on a Growth Surface, Metallofiz. Noveishie Tekhnol., 38, No. 8: 1103—1116 (2016) (in Ukrainian)


REFERENCES
  1. J. van Deelen, A. Illiberi, A. Hovestad, I. Barbu, and L. Klerk, Proc. of SPIE, 8470: 84700P (2012). Crossref
  2. N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, Nano Energy, 1, No. 1: 777 (2012). Crossref
  3. P. Berini, Adv. Optics and Photonics, 1, No. 3: 484 (2009). Crossref
  4. M. Volmer and A. Weber, Z. Physik. Chem., 119: 277 (1926).
  5. X. Yu, P. M. Duxbury, G. Jeffers, and M. A. Dubson, Phys. Rev. B, 44, No. 23: 13163(R) (1991). Crossref
  6. G. B. Smith, A. I. Maaroof, and M. B. Cortie, Phys. Rev. B, 78, No. 16: 165418 (2008). Crossref
  7. V. I. Perekrestov, S. N. Kravchenko, and A. V. Pavlov, Phys. Met. Metallogr., 88, No. 5: 482 (1999).
  8. Yu. O. Kosminska, A. S. Kornyushchenko, and A. A. Mokrenko, J. Porous Mat., 20, No. 4: 967 (2013). Crossref
  9. G. K. Vener, J. S. Anderson, Tekhnologiya Tonkikh Plenok: Spravochnik [The Technology of Thin Films: Handbook] (Eds. L. Mayssel and R. Gleng) (Moscow: Sovetskoe Radio: 1977), vol. 1, p. 353 (Russian translation).
  10. B. S. Danilin, Primenenie Nizkotemperaturnoy Plazmy dlya Naneseniya Tonkikh Plenok [Low-Temperature Plasma Application for Deposition of Thin Films] (Moscow: Energoatomizdat: 1989) (in Russian).
  11. A. A. Mokrenko, Yu. O. Kosminska, and V. I. Perekrestov, Journal of Nano- and Electronic Physics, 2, No. 3: 40 (2010) (in Russian).
  12. A. A. Chernov, Sovremennaya Kristallografiya [Modern Crystallography] (Eds. B. K. Vaynshteyn, A. A. Chernov, and L. A. Shuvalov) (Moscow: Nauka: 1980), vol. 3, p. 7 (in Russian).
  13. R. Gleng, Tekhnologiya Tonkikh Plenok: Spravochnik [The Technology of Thin Films: Handbook] (Eds. L. Mayssel and R. Gleng) (Moscow: Sovetskoe Radio: 1977), vol. 1, p. 9 (Russian translation).
  14. K. S. Sree Harsha, Principles of Physical Vapor Deposition of Thin Films (Oxford: Elsevier: 2006).
  15. V. I. Perekrestov, Yu. O. Kosminska, A. A. Mokrenko, I. N. Kononenko, and A. S. Kornyushchenko, Vacuum, 86, No. 1: 111 (2011). Crossref
  16. V. I. Perekrestov, A. I. Olemskoi, Yu. O. Kosminska, and A. A. Mokrenko, Phys. Lett. A, 373, No. 37: 3386 (2009). Crossref
  17. V. I. Perekrestov, A. S. Kornyushchenko, Yu. O. Kosminska, and V. B. Deshin, Metallofiz. Noveishie Tekhnol., 34, No. 2: 239 (2012) (in Russian).
  18. V. I. Perekrestov, Yu. O. Kosminska, A. S. Kornyushchenko, and V. M. Latyshev, Physica B, 411: 140 (2013). Crossref
  19. A. S. Kornyushchenko, V. V. Natalich, and V. I. Perekrestov, J. Cryst. Growth, 442: 68 (2016). Crossref
  20. V. Perekrestov, A. Kornyushchenko, V. Latyshev, St. Ostendorp, and G. Wilde, phys. status solidi (b), 252: 397 (2015). Crossref
  21. V. I. Perekrestov, Yu. O. Kosminska, A. S. Kornyushchenko, and V. M. Latyshev, J. Porous Mat., 21, No. 6: 1159 (2014). Crossref
  22. V. Perekrestov, Yu. Kosminska, A. Mokrenko, and T. Davydenko, Appl. Surf. Sci., 298: 171 (2014). Crossref
  23. V. I. Perekrestov, A. S. Kornyushchenko, and V. V. Natalich, Solid State Sci., 33: 12 (2014). Crossref
  24. V. Perekrestov, A. Kornyushchenko, Yu. Kosminska, G. Wilde, S. Ostendorp, and N. Winkler, Appl. Surf. Sci., 316: 155 (2014). Crossref
  25. V. I. Perekrestov, A. A. Mokrenko, Yu. A. Kosminskaya, and D. I. Rubets, J. Surf. Invest. X-Ray, Synchrotron and Neutron Techn., 5, No. 4: 667 (2011). Crossref
  26. A. A. Mokrenko, Yu. O. Kosminska, and V. I. Perekrestov, Journal of Nano- and Electronic Physics, 3, No. 2: 105 (2011) (in Russian).
  27. V. I. Perekrestov, A. S. Kornyushchenko, and Yu. A. Kosminskaya, Phys. Solid State, 50, No. 7: 1357 (2008). Crossref
  28. V. I. Perekrestov, A. S. Kornyushchenko, and Yu. A. Kosminskaya, Tech. Phys., 53, No. 10: 1364 (2008). Crossref
  29. V. I. Perekrestov, A. S. Kornyushchenko, Yu. O. Kosminska, and B. V. Deshin, Visnyk SumDU. Ser. Fizyka, Matematyka, Mekhanika, No. 1: 43 (2008) (in Russian).
  30. V. I. Perekrestov and S. N. Kravchenko, Pribory i Tekhika Eksperimenta, 45, No. 3: 123 (2002) (in Russian).