Influence of Vibration on Morphology of Front During the Directional Solidification

O. P. Fedorov$^{1,2}$, V. F. Demchenko$^{1,3}$, E. L. Zhivolub$^{2}$

$^{1}$Space Research Institute NAS of Ukraine and State Space Agency of Ukraine, 40, 4/1, Glushkov Ave., 03680, Kyiv-187, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{3}$E.O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv, Ukraine

Received: 18.10.2016. Download: PDF

The methods of direct observation of the crystallization front in transparent substances and numerical simulation are used in study of the effect of vibration on interface morphology, heat and mass transfer in the melt. The Bridgman crystal-growth technology is applied using axial vibration of cylindrical sample. A strong influence of the melt flow emerging due to vibration on crystallization front stability as well as the effect of the ratio of the amplitudes of vibration and gravity convection on melt flow parameters is observed.

Key words: directional solidification, vibration, morphology of crystallization front, heat and mass transfer in the melt, numerical simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i12/1681.html

DOI: https://doi.org/10.15407/mfint.38.12.1681

PACS: 61.50.-f, 62.30.+d, 64.70.dg, 81.10.Aj, 81.10.Fq, 81.10.Mx, 81.30.Fb

Citation: O. P. Fedorov, V. F. Demchenko, and E. L. Zhivolub, Influence of Vibration on Morphology of Front During the Directional Solidification, Metallofiz. Noveishie Tekhnol., 38, No. 12: 1681—1696 (2016) (in Russian)


REFERENCES
  1. W. C. Yu, Z. B. Chen, W. T. Hsu, B. Roux, T. P. Lyubimova, and C. W Lan, J. Crystal Growth, 271: 474 (2004) Crossref
  2. C.-W. Lan, D. Lyubimov, T. P. Lyubimova, D. V. Lyubimov, and B. S. Maryshev, Fluid Dynamics, 43, No. 4: 523 (2008) Crossref
  3. D. Lyubimov, T. P. Lyubimova, A. A. Tcherepanov et al., Intern. J. Microgravity Res. Appl., 16, No. 1: 290 (2005) Crossref
  4. A. Fedyushkin, N. Bourago, V. Polezhaev, and E. Zharikov, J. Crystal Growth, 275: 1557 (2005) Crossref
  5. E. V. Zharikov, I. H. Avetisov, A. V. Skorenko et al., Poverkhnost. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya, No. 9: 56 (2001) (in Russian)
  6. V. S. Zemskov, M. R. Rauhman, and V. P. Shalimov, Poverkhnost. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya, No. 9: 41 (2001) (in Russian)
  7. V. S. Zemskov, M. R. Rauhman, and V. P. Shalimov, Itogi Eksperimentov IMET RAN po Vyrashchivaniyu Monokristallov v Usloviyakh Poletov Kosmicheskikh Apparatov (Moscow: Nauka: 2013), p. 383 (in Russian)
  8. A. I. Fedoseyev and J. D. Alexander, J. Crystal Growth, 211: 34 (2000) Crossref
  9. O. P. Fedorov and A. G. Mashkovskii, Kristallografiya, 60, No. 2: 260 (2015) (in Russian)
  10. L. Buhler and S. H. Davis, J. Cryst. Growth, 186: 629 (1998) Crossref
  11. O. P. Fedorov, Protsessy Rosta Kristallov: Kinetika, Formoobrazovanie, Neodnorodnosti [Crystal Growth Processes: Kinetics, Shape Formation, Inhomogeneities] (Kyiv: Naukova Dumka: 2010) (in Russian)
  12. O.P. Fedorov, V. F. Demschenko, I. V. Shuba, and A. B. Lesnoi, Fizika i Khimiya Obrabotki Materialov, No. 5: 85 (2015) (in Russian)
  13. G. Z. Gershuni and E. M. Zhukhovickii, Konvektivnaya Ustoychivost Neszhimaemoy Zhidkosti (Moscow: Nauka: 1972) (in Russian)