Structure and Properties of the 20GL Steel After Electric-Spark Alloying with Nickel and Molybdenum and Ultrasonic Impact Treatment

G. I. Prokopenko, B. M. Mordyuk, P. Yu. Volosevych, S. P. Vorona, T. V. Popova, N. O. Piskun

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 06.07.2016; final version - 24.01.2017. Download: PDF

The possibility for increasing the mechanical properties of the 20 GL steel by electric-spark alloying (ESA) using nickel or molybdenum electrodes and by the multifactor positive influence of surface finishing by means of ultrasonic impact treatment (UIT) is demonstrated. The separately applied UIT leads to increase in microhardness and fatigue strength of the 20 GL steel on the base of 10$^{6}$ cycles under amplitude of cyclic loads ranged within 360–400 MPa. The surface layer after ESA with molybdenum shows twice-higher microhardness than those of the original and nickel-alloyed steel samples that is due to the solid-solution hardening and multiphase state of the molybdenum-modified layer. The finishing UIT applied to the ESA-modified layers increases the fatigue durability of the 20 GL steel because of the roughness reduction (lowering the superficial stress raisers), the formation of residual compressive macrostresses, and the creation of dislocation-cell structures (increasing the number of microstructural stress raisers). Both factors lead to the reduction in probability of both the strain localization and the early nucleation of fatigue cracks.

Key words: ultrasonic impact treatment, electro-spark alloying, dislocation-cell structure, fatigue durability.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i02/0189.html

DOI: https://doi.org/10.15407/mfint.39.02.0189

PACS: 43.35.+d, 61.05.C-, 62.20.M-, 62.20.Qp, 62.65.+k, 68.37.Lp, 81.40.Np

Citation: G. I. Prokopenko, B. M. Mordyuk, P. Yu. Volosevych, S. P. Vorona, T. V. Popova, and N. O. Piskun, Structure and Properties of the 20GL Steel After Electric-Spark Alloying with Nickel and Molybdenum and Ultrasonic Impact Treatment, Metallofiz. Noveishie Tekhnol., 39, No. 2: 189—208 (2017) (in Ukrainian)


REFERENCES
  1. M. A. Balter, Uprochnenie Detaley Mashin [Strengthening of Machine Details] (Moscow: Mashinostroenie: 1978) (in Russian).
  2. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vibrations, 308: 855 (2007). Crossref
  3. B. N. Mordyuk and G. I. Prokopenko, Ultrasonic Impact Treatment—an Effective Method for Nanostructuring the Surface Layers of Metallic Materials. In: Handbook of Mechanical Nanostructuring (Weinheim: Wiley-VCH: 2015), p. 417. Crossref
  4. I. M. Andreiko, V. V. Kulyk, and O. P. Ostash, Mater. Sci., 47: 608 (2012). Crossref
  5. G. Contreras, C. Fajardo, J. A. Berríos, A. Pertuz, J. Chitty, H. Hintermann, and E. S. Puchi, Thin Solid Films, 355–356: 480 (1999). Crossref
  6. N. Michailidis, F. Stergioudi, G. Maliaris, and A. Tsouknidas, Surf. Coat. Technol., 259: 456 (2014). Crossref
  7. T. Yu. Yakovleva, Lokal'naya Plasticheskaya Deformatsiya i Ustalost' Metallov [Local Plastic Deformation and Fatigue of Metals] (Kiev: Naukova Dumka: 2003) (in Russian).
  8. M. El May, T. Palin-Luc, N. Saintier, and O. Devos, Int. J. Fatigue, 47: 330 (2013). Crossref
  9. M. Korzynski, A. Pacana, and J. Cwanek, Surf. Coat. Technol., 203: 1670 (2009). Crossref
  10. R. G. Bonora, H. J. C. Voorwald, M. O. H. Cioffi, G. S. Junior, and L. F. V. Santos, Procedia Eng., 2: 1617 (2010). Crossref
  11. G. B. Lurie and Ya. I. Shteinberg, Uprochnyayushche-Otdelochnaya Obrabotka Rabochikh Poverkhnostey Detaley Mashin Poverkhnostnym Plasticheskim Deformirovaniem (Moscow: Mashinostroenie: 1971) (in Russian).
  12. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  13. D. A. Lesyk, S. Martinez, V. V. Dzhemelinskiy, A. Lamikiz, B. N. Mordyuk, and G. I. Prokopenko, Surf. Coat. Technol., 278: 108 (2015). Crossref
  14. B. N. Mordyuk, G. I. Prokopenko, P. Yu. Volosevich, L. E. Matokhnyuk, A. V. Byalonovich, and T. V. Popova, Mater. Sci. Eng. A, 659: 119 (2016). Crossref
  15. L. V. Tikhonov, V. A. Kononenko, G. I. Prokopenko, and V. A. Rafalovsky, Mekhanicheskie Svoystva Metallov i Splavov: Spravochnik [Mechanical Properties of Metals and Alloys: Handbook] (Kiev: Naukova Dumka: 1986) (in Russian).
  16. Binary Alloy Phase Diagrams (Eds. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak) (Materials Park, OH: ASM International: 1990).
  17. T. A. Velikanova, M. V. Karpets, V. V. Kuprin, and M. A. Turchanin, Powder Metallurgy and Metal Ceramics, 49, Nos. 1–2: 86 (2010). Crossref
  18. V. B. Rajkumar and K. C. Hari Kumar, J. Alloys Compd., 611: 303 (2014). Crossref
  19. P. Galimberti, S. Lay, and A. Antoni-Zdziobek, Intermetallics, 22: 33 (2012). Crossref
  20. G. I. Prokopenko, B. N. Mordyuk, V. V. Knysh, S. A. Solovey, and T. V. Popova, Tekhnicheskaya Diagnostika i Nerazrushayushchiy Kontrol, No. 3: 34 (2014) (in Russian).
  21. V. F. Terentiev, Ustalost' Metallicheskikh Materialov [Fatigue of Metallic Materials] (Moscow: Nauka: 2003) (in Russian).
  22. G. Prokopenko, B. Mordyuk, V. Mazanko, O. Karasevska, and T. Popova, Visnyk Ternopil'skogo Natsional'nogo Tekhnichnogo Universytetu, No. 3: 170 (2013) (in Ukrainian).
  23. P. Yu. Volosevych, Uspehi Fiziki Metallov, 12: 367 (2011) (in Russian). Crossref