Modelling of Kinetics of Modes of a Fragmentation of Materials at a Severe Plastic Deformation

O. V. Khomenko$^{1}$, D. S. Troshchenko$^{1}$, L. S. Metlov$^{2}$

$^{1}$Sumy State University, 2 Rymskogo-Korsakova Str., 40000 Sumy, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03680 Kyiv, Ukraine

Received: 06.12.2016. Download: PDF

The process of metals’ fragmentation due to treatment by methods of a severe plastic deformation is investigated within the scope of nonequilibrium evolutional thermodynamics. Reviewing approach allows identifying the main channels of energy dissipation in system. The phase diagram is obtained within the approximation of a two-defect model taking into account both dislocations and grain boundaries. It sets the conditions of formation of various types of limiting (stationary) structures. The kinetics of the evolution of density of each defects’ type is investigated. As shown, the stationary structures are formed depending on the initial values of defects’ density and the values of control parameters, which are elastic shear and compressive strains. The influence of the degree of interaction of two defect subsystems on kinetics process is established. As found, the change of system states has the nature of structural-phase transition. As it follows from description ways, the limiting (stationary) structure is not invariable. It is represented as dynamic equilibrium between the processes of generation and annihilation of structural defects.

Key words: grain boundary, dislocation, phase transition, phase diagram, internal energy.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i02/0265.html

DOI: https://doi.org/10.15407/mfint.39.02.0265

PACS: 05.70.Ln, 61.72.Lk, 61.72.Mm, 62.20.F-, 64.30.Ef, 81.20.Hy, 81.30.Bx, 83.10.-y

Citation: O. V. Khomenko, D. S. Troshchenko, and L. S. Metlov, Modelling of Kinetics of Modes of a Fragmentation of Materials at a Severe Plastic Deformation, Metallofiz. Noveishie Tekhnol., 39, No. 2: 265—284 (2017) (in Russian)


REFERENCES
  1. R. Z. Valiev and I. V. Aleksandrov, Ob'yomnye Nanostrukturnye Metallicheskie Materialy: Poluchenie, Struktura i Svoystva (Moscow: Akademkniga: 2007) (in Russian).
  2. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, Vestnik UGATU, 17, No. 4: 81 (2013) (in Russian).
  3. I. G. Brodova, Zhurnal SFU. Tekhnika i Tekhnologii, 8, No. 4: 519 (2015) (in Russian).
  4. A. A. Mazilkin, B. B. Straumal, S. G. Protasova, O. A. Kogtenkova, and R. Z. Valiev, Phys. Solid State, 49, No. 5: 868 (2007). Crossref
  5. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, B. Baretzky, G. Schütz, A. Korneva, and P. Zięba, Mater. Lett., 98: 217 (2013). Crossref
  6. V. Segal, Severe Plastic Deformation (Ed. Burhanettin Altan) (New York: Nova Science Publishers: 2006), p. 1.
  7. S. N. Sergeev, I. M. Safarov, A. V. Korznikov, R. M. Galeyev, S. V. Gladkovsky, and E. M. Borodin, Letters on Materials, 2, No. 3:117 (2012) (in Russian). Crossref
  8. Ya. E. Beygelzimer, V. N. Varyukhin, D. V. Orlov, and S. G. Synkov, Vintovaya Ekstruziya—Protsess Nakopleniya Deformatsiy [Twist Extrusion—Process of Deformation Accumulation] (Donetsk: TEAN: 2003) (in Russian).
  9. L. S. Metlov, Phys. Rev. E, 90, No. 2: 022124 (2014). Crossref
  10. L. S. Metlov, Neravnovesnaya Evolyutsionnaya Termodinamika i Ee Prilozheniya [Nonequilibrium Evolution Thermodynamics and Its Applications] (Donetsk: Knowledge: 2014) (in Russian).
  11. G. A. Malygin, Phys. Solid State, 44, No. 11: 2072 (2002). Crossref
  12. L. S. Metlov, Vestnik DonGU. Ser. A: Estestvennye Nauki, 2: 144 (2009) (in Russian).
  13. L. S. Metlov and V. N. Varyukhin, Physics and High Pressure Technology, 22, No. 2: 7 (2012) (in Russian).
  14. A. V. Khomenko, D. S. Troshchenko, and L. S. Metlov, Condens. Matt. Phys., 18, No. 3: 33004 (2015). Crossref
  15. A. V. Khomenko, D. S. Troshchenko, D. V. Boyko, and M. V. Zakharov, Zh. Nano- Elektron. Fiz., 7, No. 1: 01039 (2015) (in Russian).
  16. Yu. V. Khlebnikova, L. Yu. Egorova, V. P. Pilyugin, T. R. Suaridze, and A. M. Patselov, Tech. Phys., 60, No. 7: 1005 (2015) (in Russian). Crossref
  17. L. S. Metlov, Sbornik Tezisov Mezhdunarodnoy Konferentsii 'Prochnost' Neodnorodnykh Struktur. PROS-2016' (Apr. 19–21, 2016, Moscow), p. 22 (in Russian).
  18. A. G. Gorshkov, E. I. Starovoytov, and D. V. Tarlakovskiy, Teoriya Uprugosti i Plastichnosti (Moscow: Fizmatlit: 2002) (in Russian).
  19. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Oxford: Butterworth-Heinemann: 1986).
  20. A. V. Khomenko and I. A. Lyashenko, Phys. Usp., 55, No. 10: 1008 (2012). Crossref
  21. A. I. Olemskoi, A. V. Khomenko, and D. O. Kharchenko, Physica A, 323: 263 (2003). Crossref
  22. Yu. M. Lakhtin and V. P. Leontieva, Materialovedenie: Uchebnik dlya Vysshikh Tekhnicheskikh Uchebnykh Zavedeniy (Moscow: Mashinostroenie: 1990) (in Russian).
  23. A. V. Khomenko, Ya. A. Lyashenko, and L. S. Metlov, Metallofiz. Noveishie Tekhnol., 30, No. 6: 859 (2008) (in Russian).
  24. O. D. Pogrebnjak, K. O. Dyadyura, and O. P. Gaponova, Metallofiz. Noveishie Tekhnol., 37, No. 7: 899 (2015) (in Russian). Crossref
  25. A. V. Khomenko and I. A. Lyashenko, Phys. Solid State, 49, No. 5, 936 (2007). Crossref
  26. A. D. Pogrebnjak, O. V. Bondar, S. O. Borba, G. Abadias, P. Konarski, S. V. Plotnikov, V. M. Beresnev, L. G. Kassenova, and P. Drodziel, Nucl. Instrum. Methods Phys. Res. Sect. B, 385: 74 (2016). Crossref
  27. A. D. Pogrebnjak and Yu. N. Tyurin, Phys. Usp., 48: 487 (2005). Crossref