The Concept of the Mechanism and Kinetics of Influence of Mechanochemical Processes on Edge Cutting Machining

M. O. Kurin, M. V. Surdu

National Aerospace University ‘Kharkiv Aviation Institute’, 17 Chkalova Str., 61070 Kharkiv, Ukraine

Received: 27.01.2017; final version - 28.02.2017. Download: PDF

This work is dedicated to solution of actual problem of explaining processes taking place in the contact zone between the cutting fluid and the juvenile surface. This one is also dedicated to development of a mathematical model allowing estimating the changes of deformation energy due to adsorption. The arguments are presented concerning the reasons for reducing work metal cutting and plastic deformation energy in the presence of cutting fluid. As hypothesized, the main reason is the process of hydrogenation of metal during processing, and the hydrogen itself has the most significant effect on the nature of the destruction of the surface layer of parts, being distributed, as other surfactant, unevenly by means of the accumulation in traps. As found, the free hydrogen in the metal is ionized, and its behaviour is subject to the laws of motion of a charged particle. The phenomenological model of the interaction between the cutting fluid and the juvenile surface are formulated using the electro-dislocation analogy based on similarity of Volterra dislocation and cylindrical condenser. It has the dependences, which allow connecting the electrical nature of the dislocation core with the mechanical characteristics of the material. On the basis theory of dissociative adsorption, the dependence is accepted for calculating the number of molecules of the medium reaching per unit of time the juvenile surface portions formed by dispersing the treated metal in a unit time. It allows the development of a mathematical model to calculate the ratio of the work of deformation of elements both the surface layer of treated material with adatoms and the juvenile surface as well as the dislocation density.

Key words: adsorption, dislocation, hydrogenation, electro-dislocation analogy, solvated electron, Fermi energy, juvenile surface, deformation energy.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i03/0401.html

DOI: https://doi.org/10.15407/mfint.39.03.0401

PACS: 46.55.+d, 61.72.Bb, 61.72.Lk, 61.72.S-, 68.43.Bc, 81.40.Lm, 81.40.Pq

Citation: M. O. Kurin and M. V. Surdu, The Concept of the Mechanism and Kinetics of Influence of Mechanochemical Processes on Edge Cutting Machining, Metallofiz. Noveishie Tekhnol., 39, No. 3: 401—424 (2017) (in Ukrainian)


REFERENCES
  1. M. A. Kurin, Otkrytye Informatsionnye i Komp'yuternye Integrirovannye Tekhnologii, Iss. 61: 82 (2013) (in Russian).
  2. N. V. Surdu, Vestnik NTU 'KhPI'. Tekhnologii v Mashynobuduvanni, Iss. 34 (2008) (in Russian).
  3. M. A. Kurin, Issledovanie Tekhnologii Planetarnogo Glubinnogo Shlifovaniya Ploskikh Poverkhnostey Detaley Aviatsionnykh Dvigateley [Investigation of the Technology of Planetary Deep Grinding of Plane Surfaces of Aircraft Engine Parts] (Thesis of Disser. … for Cand. Techn. Sci.) (Kharkiv: M. E. Zhukovskiy National Aerospace University 'Kharkiv Aviation Institute': 2011) (in Russian).
  4. N. V. Surdu, Povyshenie Effektivnosti Shlifovaniya Trudnoobrabatyvaemykh Materialov za Shchet Usovershenstvovaniya Kinematiki Protsessov [Enhancement of Grinding Efficiency of Tough-to-Machine Materials by Improving the Kinematics of Processes] (Thesis of Disser. … for Cand. Techn. Sci.) (Kharkiv: A.N. Podgorny Institute for Mechanical Engineering Problems, N.A.S. of Ukraine: 2005) (in Russian).
  5. D. N. Garkunov, Tribotekhnika (Iznos i Bezyznosnost') [Tribological Engineering (Wear and Wearlessness)] (Moscow: MSKhA: 2001) (in Russian).
  6. D. H. Herring, Wire Forming Technology International, 13, No. 4: 24 (2010).
  7. A. Barnoush, Hydrogen Embrittlement, Revisited by in situ Electrochemical Nanoindentation (Thesis of Disser. … for PhD) (Saarbrucken: Saarland University: 2007).
  8. S. Brahimi, Fundamentals of Hydrogen Embrittlement in Steel Fasteners (Montreal: IBECA Technologies Corp.: 2014).
  9. G. I. Suranov, Vodorod: Razrushenie, Iznashivanie, Smazka Detaley Mashin [Hydrogen: Destruction, Wear, Lubrication of Machine Parts] (Ukhta: UGTU: 2015) (in Russian).
  10. V. N. Latyshev, Povyshenie Effektivnosti SOZh [Enhancement of Efficiency of LCL] (Moscow: Mashinostroenie: 1975) (in Russian).
  11. L. V. Shashkova, Fraktal'no-Sinergeticheskie Aspekty Lokal'noy Mikropovrezhdaemosti i Razrusheniya Diffuzionno-Aktivirovannoy Vodorodom Stali [Fractal-Synergetic Aspects of Local Microdamaging and Destruction by Diffusion-Activated Hydrogen] (Thesis of Disser. … for Dr. Phys.-Math. Sci.) (Moscow: OGU: 2014) (in Russian).
  12. G. V. Karpenko and R. I. Kripyakevich, Vliyanie Vodoroda na Strukturu i Svoystva Stali [The Influence of Hydrogen on the Structure and Properties of Steel] (Moscow: Metallurgizdat: 1962) (in Russian).
  13. P. V. Gel'd, R. A. Ryabov, and E. S. Kodes, Vodorod i Nesovershenstva Struktury Metalla [Hydrogen and Imperfections of Metal Structure] (Moscow: Metallurgiya: 1979) (in Russian).
  14. B. A. Kolachev, Vodorodnaya Khrupkost' Metallov [Hydrogen Brittleness of Metals] (Moscow: Metallurgiya: 1985) (in Russian).
  15. E. G. Maksimov and O. A. Pankratov, Uspekhi Fizicheskikh Nauk, 116, Iss. 7: 385 (1975) (in Russian). Crossref
  16. V. A. Somenkov and S. Sh. Shil'shteyn, Fazovye Prevrashcheniya Vodoroda v Metallakh (Obzor) [Phase Transformations of Hydrogen in Metals (Review)] (Moscow: I. V. Kurchatov Institute of Atomic Energy: 1978) (in Russian).
  17. P. V. Gel'd and R. A. Ryabov, Vodorod v Metallakh i Splavakh [Hydrogen in Metals and Alloys] (Moscow: Metallurgiya: 1974) (in Russian).
  18. Yu. A. Khrustalev, Effekt Bezyznosnosti i Tribotekhnologii, No. 2: 19 (1997) (in Russian).
  19. J. P. Hirth and J. Lothe, Teoriya Dislokatsiy [Theory of Dislocations] (Moscow: Atomizdat: 1972) (in Russian).
  20. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Fizicheskie Osnovy Plasticheskoy Deformatsii [Physical Fundamentals of Plastic Deformation] (Moscow: Metallurgiya: 1982) (in Russian).
  21. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Kolloidnaya Khimiya [Colloid Chemistry] (Moscow: Vysshaya Shkola: 2004) (in Russian).
  22. G. A. Malygin, Fizika Tverdogo Tela, 43, Iss. 5: 822 (2001) (in Russian).
  23. G. A. Malygin, Uspekhi Fizicheskikh Nauk, 169, Iss. 9: 979 (1999) (in Russian). Crossref
  24. R. B. Morgunov, Uspekhi Fizicheskikh Nauk, 174, Iss. 2: 131 (2004) (in Russian). Crossref
  25. P. Yu. Butyagin, Uspekhi Khimii, Iss. 11: 1769 (1984) (in Russian).
  26. N. V. Surdu, Voprosy Proektirovaniya i Proizvodstva Letatel'nykh Apparatov, Iss. 24 (1): 139 (2001) (in Russian).
  27. V. N. Chebotin, Fizicheskaya Khimiya Tverdogo Tela [Physical Chemistry of Solid State] (Moscow: Khimiya: 1982) (in Russian).
  28. F. Ya. Yakubov, Energeticheskie Sootnosheniya Protsessa Mekhanicheskoy Obrabotki Materialov [Energy Relationships of the Process of Mechanical Processing of Materials] (Tashkent: Fan: 1985) (in Russian).
  29. V. K. Starkov, Fizika i Optimizatsiya Rezaniya Materialov [Physics and Optimization of Material Cutting] (Moscow: Mashinostroenie: 2009) (in Russian).
  30. Yu. N. Alekseev, Vvedenie v Teoriyu Obrabotki Metallov Davleniem, Prokatkoy i Rezaniem [Introduction to the Theory of Metal Working with Pressure, Rolling and Cutting] (Kharkiv: Izdatel'stvo KhGU: 1969) (in Russian).
  31. GOST 25.503–97. Raschety i Ispytaniya na Prochnost'. Metody Mekhanicheskikh Ispytaniy Metallov. Metod Ispytaniya na Szhatie [Calculations and Strength Tests. Methods of Mechanical Testing of Metals. Compression Test Method] (Minsk: Mezhgosudarstvennyy Sovet po Standartizatsii, Metrologii i Sertifikatsii: 1997) (in Russian).
  32. A. I. Dolmatov, A. A. Kabatov, and M. A. Kurin, Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, No. 3 (100): 12 (2013) (in Russian).
  33. P. P. Salem, Teoriya Dvoynogo Sloya [The Theory of Double Layer] (Moscow: Fizmatlit: 2003) (in Russian).
  34. I. M. Zharskiy, N. L. Smolyag, and A. A. Chernik, Kinetika Elektroliticheskogo Vydeleniya Vodoroda [Kinetics of Electrolytic Release of Hydrogen] (Belarusian State Technological University: 2016) (in Russian).
  35. R. Yukhnevich, E. Valashkovskiy, and G. Stankevich, Tekhnika Bor'by s Korroziey [The Technique of Corrosion Control] (Leningrad: Khimiya: 1978) (in Russian).
  36. A. M. Kuznetsov, Sorosovskiy Obrazovatel'nyy Zhurnal, 6, No. 5: 45 (2000) (in Russian).
  37. Yu. P. Cherdantsev, I. P. Chernov, and Yu. I. Tyurin, Metody Issledovaniya Sistem Metall–Vodorod [Methods for Studying Metal–Hydrogen Systems] (Tomsk: Izd. TPU: 2008) (in Russian).
  38. L. P. Avakyants, Elektrony v Metalle [Electrons in Metal] (M. V. Lomonosov Moscow State University: 2010) (in Russian).
  39. V. V. Fitsak, Statistika Kvantovykh Chastits. Elektrony v Metalle [Statistics of Quantum Particles. Electrons in Metal] (St. Petersburg Mining University: 2014) (in Russian).
  40. V. N. Glazkov, Svoystva Elektronnogo Fermi-Gaza [Properties of Electronic Fermi Gas] (Moscow: MFTI: 2016) (in Russian).
  41. L. D. Landau and E. M. Lifshits, Teoreticheskaya Fizika. Statisticheskaya Fizika [Theoretical Physics. Statistical Physics] (Moscow: Nauka: 1976) (in Russian).
  42. A. D. Andreyanov and V. P. Petrosyan, Visnyk Odes'kogo Natsional'nogo Universytetu. Khimiya, 15, No. 12: 54 (2010) (in Russian).
  43. A. D. Andreyanov, I. A. Kuznetsova, and L. I. Korolenko, Visnyk Odes'kogo Natsional'nogo Universytetu. Khimiya, 14, No. 11: 45 (2009) (in Russian).
  44. F. K. Tkachenko, K. I. Tkachenko, and V. G. Gavrilova, Visnyk Pryazovs'kogo Derzhavnogo Tekhnichnogo Universytetu. Tekhnichni Nauky, Iss. 2: 102 (2010) (in Russian).
  45. L. S. Sterman and V. N. Pokrovskiy, Fizicheskie i Khimicheskie Metody Obrabotki Vody na TES [Physical and Chemical Methods of Water Treatment at TPS] (Moscow: Energoatomizdat: 1991) (in Russian).
  46. E. N. Bushuev, Vestnik IGEU, Iss. 2: 1 (2007) (in Russian).
  47. O. S. Erkovich and A. V. Kurochkin, Vestnik MGTU im. N. E. Baumana. Estestvennye Nauki, No. 1: 18: (2012) (in Russian).