Loading [MathJax]/jax/output/HTML-CSS/jax.js

Modes and Twinning Stresses of Martensite Variants Rearrangements in Near-Stoichiometric Ni2MnGa Single Crystal

V. Soolshenko1, V. Beloshapka2

1G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
2Berdyansk State Pedagogical University, 4 Shmidt Str., UA-36244 Berdyansk, Ukraine

Received: 18.04.2017. Download: PDF

The sequences of the thermally induced martensitic and intermartensitic L2110M14ML10 and L1014M10ML21 transformations are observed in Ni50.6Mn28.5Ga20.9 single crystal on the cooling and heating branches of a thermal cycle. The modes of stress-induced intervariant transitions in the 10M, 14M, and L10 martensites are investigated on the basis of matrix approach, and the stresses of orientation-variants’ rearrangements are determined as a function of martensite structure, transition mode, and temperature. The twinning stress decreases along the L10, 14M, and 10M martensites with a decrease of period of a nanotwinned structure.

Key words: shape-memory alloys, Ni2MnGa, martensitic transformation, orientation variant, intervariant transition, twinning stress.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0567.html

DOI: https://doi.org/10.15407/mfint.39.05.0567

PACS: 61.50.Ks, 62.20.fg, 77.80.B-, 81.30.Kf, 83.10.Tv

Citation: V. Soolshenko and V. Beloshapka, Modes and Twinning Stresses of Martensite Variants Rearrangements in Near-Stoichiometric Ni2MnGa Single Crystal, Metallofiz. Noveishie Tekhnol., 39, No. 5: 567—578 (2017)


REFERENCES
  1. S. J. Murray, M. Marioni, S. M. Allen, and R. C. O'Handley, Appl. Phys. Lett., 77, No. 6: 886 (2000). Crossref
  2. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett., 80, No. 10: 1746 (2002). Crossref
  3. A. Sozinov, A. A. Likhachev, N. Lanska, O. Soderberg, K. Ullakko, and V. K. Lindroos, Mater. Sci. Eng. A, 378, Nos. 1–2: 399 (2004). Crossref
  4. A. Sozinov, N. Lanska, A. Soroka, and W. Zou, Appl. Phys, Lett., 102: 021902 (2013). Crossref
  5. P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. B, 49, No. 3: 295 (1984). Crossref
  6. V. V. Martynov and V. V. Kokorin, J. Phys. III France, 2, No. 5: 739 (1992). Crossref
  7. K. Otsuka, T. Ohba, M. Tokonami, and C.M. Wayman, Scr. Met., 29, No. 10: 1359 (1993). Crossref
  8. V. V. Martynov, J. Phys. IV France, 5, No. C8: 91 (1995). Crossref
  9. S. Morito and K. Otsuka, Mater. Sci. Eng. A, 208, No. 1: 47 (1996). Crossref
  10. J. Pons, V. A. Chernenko, R. Santamarta, and E. Cesari, Acta Mat., 48, No. 12: 3027 (2000). Crossref
  11. V. Soolshenko, N. Lanska, and K. Ullakko, J. Phys. IV France, 112: 947 (2003). Crossref
  12. C. Segui, V. A. Chernenko, J. Pons, and E. Cesari, J. Magn. Magn. Mater., 290–291: 811 (2005). Crossref
  13. J. Pons, R. Santamarta, V. A. Chernenko, and E. Cesari, J. Appl. Phys., 97: 083516 (2005). Crossref
  14. J. Pons, R. Santamarta, V. A. Chernenko, and E. Cesari, Mater. Sci. Eng. A, 438–440: 931 (2006). Crossref
  15. A. A. Likhachev and K. Ullakko, EPJ direct, 1, No. 1: 1 (2000). Crossref
  16. A. G. Khachaturyan, S. M. Shapiro, and S. Semenovskaya, Phys. Rev. B, 43, 10832 (1991). Crossref
  17. M. Zeleny, L. Straka, and A. Sozinov, MATEC Web of Conferences, 33: 05006 (2015). Crossref
  18. M. Zeleny, L. Straka, A. Sozinov, and O. Heczko, Phys. Rev. B, 94: 224108 (2016). Crossref