Characterisation of Mo–V–N Coatings Deposited on XC100 Substrate by Sputtering Cathodic Magnetron

Brahim Chermime$^{1,2}$, Abdelaziz Abboudi$^{1}$, Hamid Djebaili$^{2}$, Mourad Brioua$^{1}$

$^{1}$Université Colonel Hadj Lakhdar, Batna, Algeria
$^{2}$LASPI2A, Université Abbas Laghrour de Khenchela, BP 1252 Route de Batna Khenchela, 40004 Khenchela, Algeria

Received: 22.03.2017; final version - 10.04.2017. Download: PDF

The aim of this work is the characterization of ternary molybdenum–vana¬dium nitride (Mo–V–N) coatings deposited on silicon and XC100 steel substrates by the reactive radiofrequency dual magnetron sputtering with different contents of the Mo and V targets and nitrogen as reactive gas. The metal-target bias voltages are varied from 300 to 900 V. The hardness, surface morphology, microstructure and composition are studied by nanoindentation, scanning electron microscopy, atomic-force microscopy, and x-ray diffractometry. The Mo–V–N films manifest pyramidal surface morphology, high roughness (of 13.5 nm), but low mechanical properties. Hardness and Young’s modulus are found in the ranges of 10–18 GPa and 100–335 GPa, respectively. The residual stresses of coatings are compressive and varied between 0.8 GPa and 2.5 GPa (calculated with the Stoney formula).

Key words: coatings, microstructure, residual stresses, roughness, hardness.



PACS: 62.20.Qp, 68.35.Ct, 68.35.Dv, 81.15.Cd, 81.40.Pq, 81.65.Lp

Citation: Brahim Chermime, Abdelaziz Abboudi, Hamid Djebaili, and Mourad Brioua, Characterisation of Mo–V–N Coatings Deposited on XC100 Substrate by Sputtering Cathodic Magnetron, Metallofiz. Noveishie Tekhnol., 39, No. 5: 665—675 (2017)

  1. A. W. Kirby and D. J. Fray, J. Mater. Sci. Lett., 12, Iss.9: 633 (1993). Crossref
  2. J. Sondor, Strojárstvo/Strojírenství, 6: 70 (2005) (in Slovak).
  3. J. Šošovičková, Modification of Surface Properties of Metal Materials by PVD Methods (Thesis of Disser.) (Brno: Univerzita Obrany v Brne: 2005) (in Slovak).
  4. G. Linker, R. Smithey, and O. Meyer, J. Physics F: Metal Physics, 14, No. 7: L115 (1984). Crossref
  5. S. B. Qadri, W. W. Fuller, K. E. Kihlstrom, R. W. Simon, E. F. Skelton, D. VanVechten, and S. A. Wolf, J. Vac. Sci. & Tech., 3: 664 (1985). Crossref
  6. T. Hirata and K. Saito, J. Mater. Sci. Lett., 9, Iss. 7: 827 (1990). Crossref
  7. Jeong-Youb Lee and Jong-Wan Park, Jpn. J. Appl. Phys., 35, Part 1, No. 8: 4280 (1996). Crossref
  8. J.-Ch. Chuang, Sh.-L. Tu, and M.-Chi. Chen, Thin Solid Films, 346, Iss. 1–2: 299 (1999). Crossref
  9. V. P. Anitha, S. Major, D. Chandrashekharam, and M. Bhatnagar, Surf. Coat. Tech., 79, Iss. 1–3: 50 (1996). Crossref
  10. K. K. Shih and D. B. Dove, J. Vac. Sci. Technol. A, 8, Iss. 3: 1359 (1990). Crossref
  11. K.-L. Lin and Y.-J. Ho, J. Vac. Sci. Technol. A, 13, Iss. 6: 2872 (1995). Crossref
  12. J. Birch, S. Tungasmita, and V. Darakchieva, Magnetron Sputter Epitaxy of AlN, in Nitrides as Seen by the Technology (Eds. T. Paskova and B. Monemar) (Kerala: Research Signpost: 2002).
  13. P. M. Martin, Handbook of Deposition Technologies for Films and Coatings (William Andrew: 2009), p. 936.
  14. A. L. Patterson, Phys. Rev., 56, Iss. 10: 978 (1939). Crossref
  15. L. Wang, X. Nie, J. Housden, E. Spain, J. C. Jiang, E. I. Meletis, and A. Leyland, Surf. Coat. Technol., 203, Iss. 5–7: 816 (2008). Crossref
  16. G. G. Stoney, Proc. R. Soc. A., 82, Iss. 553: 172 (1909). Crossref
  17. K. Inumaru, K. Baba, and S. Yamanaka, Chem. Mater., 17, Iss. 24: 5935 (2005). Crossref
  18. M. Nordin, M. Larsson, and S. Hogmark, Surf. Coat. Technol., 106, Iss. 2–3: 234 (1998). Crossref
  19. C. L. Bull, P. F. McMillan, E. Soignard, and K. Leinenweber, J. Solid State Chemistry, 177, Iss. 4–5: 1488 (2004). Crossref
  20. H. Gueddaoui, G. Schmerber, M. Abes, A. Guemmaz, and J. C. Parlebas, Catalysis Today, 113, Iss. 3–4: 270 (2006). Crossref
  21. U. Wiklund, B. Casas, and N. Stavlid, Wear, 261, Iss. 1: 2 (2006). Crossref