Features of Formation and Transformation of Fe$_{3}$O$_{4}$-Nanoparticle Clusters in a Magnetic Fluid under the Long-Term Magnetic-Field Pulse Action

S. I. Shulyma, B. M. Tanygin, V. F. Kovalenko, M. V. Petrychuk

Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine

Received: 24.04.2017. Download: PDF

Features of the optical transmission by means of the thin ferrofluid (FF) layer in an external magnetic field are studied. The observed effect of optical-extinction trend inversion (OETI) occurs over time after the magnetic field switching on and switching off. The onset time of OETI depends on the magnitude of field amplitude and on the wavelength $\lambda$ of the probing optical radiation. The OETI existence is associated with magnetic-nanoparticles’ clusters’ transformation (formation or destruction) dynamics in FF under the magnetic field action. At the time moment when the size of magnetic-nanoparticles’ clusters formed from FF, $D$, becomes commensurable with the wavelength $\lambda$ ($D_{1}$ = $\alpha\lambda$, where $\alpha$ is a dimensionless coefficient), the optical-radiation scattering and absorption effect becomes maximal (OETI occurrence moment), and then begins to decrease. The discussion of experimental results is based on the proposed model for the magnetic-nanoparticles’ clusters’ formation and transformation in FF under the external magnetic-field action. The magnetic-nanoparticles’ chains’ clusters’ lateral aggregation is an important entry of this model. The practical importance of obtained results (for instance, in clusters’ density determination, new-type composite materials’ creation, etс.) is considered.

Key words: ferrofluid, magnetic nanoparticles, clusters, optical transmission, optical extinction.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0693.html

DOI: https://doi.org/10.15407/mfint.39.05.0693

PACS: 42.25.Bs, 42.25.Dd, 75.50.Mm, 78.67.Bf, 81.40.Rs, 81.70.Ex, 83.60.Np

Citation: S. I. Shulyma, B. M. Tanygin, V. F. Kovalenko, and M. V. Petrychuk, Features of Formation and Transformation of Fe$_{3}$O$_{4}$-Nanoparticle Clusters in a Magnetic Fluid under the Long-Term Magnetic-Field Pulse Action, Metallofiz. Noveishie Tekhnol., 39, No. 5: 693—708 (2017) (in Ukrainian)

  1. A. Solanki, J. D. Kim, and K.-B Lee, Nanomedicine, 3: 567 (2008). Crossref
  2. D.-H. Kim, Y. Aguilar, N. Lu, R. Ghaffari, and J. A. Rogers, NPG Asia Materials, 4: 15 (2012). Crossref
  3. T. Chen and L. Dai, J. Mater. Chem. A, 2: 10756 (2014). Crossref
  4. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Chem. Soc. Rev., 42: 2824 (2013). Crossref
  5. J. Peet, A. J. Heeger, and G. C. Bazan, Acc. Chem. Res., 42: 1700 (2009). Crossref
  6. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett., 93: 091107 (2008). Crossref
  7. J. V. I. Timonen, M. Latikka, L. Leibler, R. H. A. Ras, and O. Ikkala, Science, 341: 253 (2013). Crossref
  8. R. E. Rosensweig, Ferrohydrodynamics (New York: Dover Publication, Inc.: 2013), p.368.
  9. S. Taketomi, H. Takahashi, N. Inaba, and H. Miyajima, J. Phys. Soc. Jpn., 60: 1689 (1991). Crossref
  10. A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix, J. Magn. Magn. Mater., 201: 413 (1999). Crossref
  11. Z. Aguilar, Y. Aguilar, H. Xu, B. Jones, J. Dixon, H. Xu, and A. Wang, ECS Transactions, 33, Iss.8: 69 (2010). Crossref
  12. A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J. W. Brock, and D. Huhn, Cancer Res., 56: 4694 (1996).
  13. B. Yellen, G. Friedman, and K. Barbee, IEEE Trans. Magn., 40: 2994 (2004). Crossref
  14. K. Shimada, S. Shuchi, H. Kanno, Y. Wu, and S. Kamiyama, J. Magn. Magn. Mater., 289: 9 (2005). Crossref
  15. B. M. Tanygin, V. F. Kovalenko, M. V. Petrychuk, and S. A. Dzyan, J. Magn. Magn. Mater., 324: 4006 (2012). Crossref
  16. S. I. Shulyma, B. M. Tanygin, V. F. Kovalenko, and M. V. Petrychuk, J. Magn. Magn. Mater., 416: 141 (2016). Crossref
  17. B. M. Tanygin, S. I. Shulyma, V. F. Kovalenko, and M. V. Petrychuk, Chinese Physics B, 24, No. 10: 104702 (2015). Crossref
  18. E. A. Peterson and D. A. Krueger, J. Coll. Interf. Sci., 62: 24 (1977). Crossref
  19. K. V. Erin, Zhur. Tekh. Fiziki, 78, No. 4: 133 (2008) (in Russian).
  20. B. Hoffmann and W. Köhler, J. Magn. Magn. Mater., 262: 289 (2003). Crossref
  21. S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett., 79: 2372 (2001). Crossref
  22. S. Y. Yang, H. E. Horng, Y. T. Shiao, C.-Y. Hong, and H. C. Yang, J. Magn. Magn. Mater., 307: 43 (2006). Crossref
  23. S. Shulyma, B. Tanygin, V. Kovalenko, and M. Petrychuk, J. Nanomater., 2017, Article ID 7251725: 1 (2017). Crossref
  24. V. I. Petrenko, M. V. Avdeev, V. M. Garamus, L. A. Bulavin, V. L. Aksenov, and L. Rosta, Colloids Surf. A, 369: 160 (2010). Crossref
  25. V. I. Petrenko, V. L. Aksenov, M. V. Avdeev, L. A. Bulavin, L. Rosta, L. Vekas, V. M. Garamus, and R. Willumeit, Phys. Solid State, 52: 974 (2010). Crossref
  26. V. I. Drozdova, Physical Properties of Ferrofluid (Sverdlovsk: UNTs AN SSSR: 1983), p. 34 (in Russian).
  27. J.-C. Bacri and D. Salin, J. Phys. Lett., 43: 771 (1982). Crossref
  28. V. V. Gogosov, S. I. Martynov, S. N. Tsurikov, and G. A. Shaposhnikova, Magnetohydrodynamic, 23: 241 (1988).
  29. J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, Appl. Phys. Lett., 91: 253108 (2007). Crossref
  30. J. Li, X. Liu, Y. Lin, X. Qui, X. Ma, and Y. Huang, J. Phys. D: Appl. Phys., 37: 3357 (2004). Crossref
  31. J. M. Laskar, J. Philip, and B. Raj, Phys. Rev. E, 80: 041401 (2009). Crossref
  32. W. C. Elmore, Phys. Rev., 54: 309 (1938). Crossref
  33. A. O. Ivanov, J. Magn. Magn. Mater., 154: 66 (1996). Crossref
  34. M. Yoon and D. Tománek, J. Phys.: Condens. Matter, 22, No. 45: 455105 (2010). Crossref
  35. A. O. Ivanov, Kolloidnyy Zhurnal, 57, No. 3: 347 (1995) (in Russian).
  36. C. Rablau, P. Vaishnava, C. Sudakar, R. Tackett, G. Lawes, and R. Naik, Phys. Rev. E, 78: 051502 (2008). Crossref
  37. T. C. Hales, arXiv 9811071 (2002), https://arxiv.org/abs/math/9811071v2
  38. C. Song, P. Wang, and H. A. Makse, Nature Lett., 453: 629 (2008). Crossref
  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons: 1998), p. 544. Crossref
  40. J. D. Mayo, Stabilized Reversible Polymer Composition: U.S. Patent Application 2014/0353549 A1 (Published December 4, 2014).