Influence of Germanium Underlayers on Optical Properties of Nanosize Copper Films

R. I. Bihun$^{1}$, Z. V. Stasyuk$^{1}$, O. V. Stroganov$^{1}$, D. S. Leonov$^{2}$

$^{1}$Ivan Franko National University of Lviv, 1 Universytetska Str., UA-79000 Lviv, Ukraine
$^{2}$Technical Centre, NAS of Ukraine, 13 Pokrovs’ka Str., 04070 Kyiv, Ukraine

Received: 05.08.2017. Download: PDF

The transmission and reflection spectra of thin copper films with different thicknesses (of 2–20 nm) grown under ultrahigh vacuum conditions (where the pressure of the residual gas components does not exceed 10$^{-7}$ Pa) on a clean glass substrate and a glass substrate precoated with a germanium underlayer with thickness of 0.5 nm are investigated in the visible and near-infrared wavelength ranges (300–2500 nm) at 300 K. The mechanisms of formation and the modes of growth of a metal film are crucial for the controlled selection of parameters of the percolation and concomitant optical and electrical phenomena. As shown, the germanium underlayers with a mass thickness of 0.5 nm reduce the threshold thickness of copper films per 1 nm, for which the changes of optical properties accompanied a percolation transition are observed. Herewith, the reflectivity of these samples is increased in comparison with similar films deposited on a clean glass surface because of higher degree of parameter of a surface filling by deposited condensate.

Key words: thin metal films, sublayers of subatomic thickness, percolation, coefficient of reflection of films.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i09/1173.html

DOI: https://doi.org/10.15407/mfint.39.09.1173

PACS: 64.60.ah, 73.61.At, 73.63.Bd, 78.20.Ci, 78.66.Bz, 81.15.Kk

Citation: R. I. Bihun, Z. V. Stasyuk, O. V. Stroganov, and D. S. Leonov, Influence of Germanium Underlayers on Optical Properties of Nanosize Copper Films, Metallofiz. Noveishie Tekhnol., 39, No. 9: 1173—1182 (2017) (in Ukrainian)


REFERENCES
  1. A. Axelevitch, B. Gorenstein, and G. Golan, Physics Procedia, 32: 1 (2012). Crossref
  2. P. Smilauer, Contemporary Physics, 32, No. 2: 89 (1991). Crossref
  3. S. Ding, X. Wang, D. J. Chen, and Q. Q. Wang, Optics Express, 14, No. 4: 1541 (2006). Crossref
  4. R. I. Bihun, Z. V. Stasiuk, O. V. Strohanov, V. M. Havryliukh, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 3: 459 (2015) (in Ukrainian).
  5. S. V. Dukarov, S. I. Petrushenko, V. N. Sukhov, I. G Churilov, Problems of Atomic Science and Technology, 89, No. 1: 110 (2014).
  6. N. Kaiser, Applied Optics, 41, No. 16: 3053 (2002). Crossref
  7. N. T. Gladkikh, S. V. Dukarov, and V. N. Sukhov, Fizika Metallov i Metallovedenie, 78, No. 3: 87 (1994) (in Russian).
  8. S. I. Petrushenko, S. V. Dukarov, V. N. Sukhov, and I. G. Churilov, Zhurnal Nano- ta Elektronnoyi Fizyky, 7, No. 2: 02033 (2015) (in Russian).
  9. I. A. Girka, V. T. Gritsyna, Yu. G. Kazarinov, and I. N. Misyura, Naukovyy Visnyk Uzhgorodskogo Universytetu. Seriya Fizyka, Iss. 29: 97 (2011) (in Russian).
  10. R. I. Bigun, M. D. Buchkovs'ka, N. S. Koltun, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 35, No. 1: 85 (2013) (in Ukrainian).
  11. M. D. Buchkovs'ka, R. I. Bigun, Z. V. Stasyuk, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 3: 551 (2013) (in Ukrainian).