Influence of Thermochemical Treatment on the Surface Topography of Titanium

I. M. Pohrelyuk$^{1}$, S. M. Lavrys$^{1}$, I. V. Stasyshyn$^{1}$, O. V. Penkovyi$^{2}$

$^{1}$Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine
$^{2}$Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine

Received: 13.03.2017. Download: PDF

Influence of the thermochemical treatment (nitriding and boriding) on the surface topography of the Grade 2 commercially pure titanium is analysed. As established, the single-phase nitride (Ti$_2$N) or boride (TiB) films are formed on the surface during thermodiffusive saturation with nitrogen or boron at the temperature of 750°C. With increasing saturation temperature to 900°C, the formed surface film becomes a two-phase (TiN + Ti$_2$N or TiB$_2$ + TiB) one. As found, a surface roughness of the Grade 2 titanium increases, regardless of thermochemical treatment (nitriding, boriding). However, the combination of the height, spacing and additional (skewness, kurtosis) roughness parameters of a titanium surface favourably singles out boriding compared with nitriding.

Key words: titanium, nitriding, boriding, phase-structural state, microhardness, surface topography, roughness.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i09/1183.html

DOI: https://doi.org/10.15407/mfint.39.09.1183

PACS: 62.20.Qp, 68.35.Ct, 68.35.Dv, 68.35.Fx, 68.35.Gy, 68.37.Hk, 68.55.J-, 81.65.Lp

Citation: I. M. Pohrelyuk, S. M. Lavrys, I. V. Stasyshyn, and O. V. Penkovyi, Influence of Thermochemical Treatment on the Surface Topography of Titanium, Metallofiz. Noveishie Tekhnol., 39, No. 9: 1183—1196 (2017) (in Ukrainian)


REFERENCES
  1. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Weinheim: Wiley-VCH: 2003). Crossref
  2. A. N. Petrun'ko, Yu. G. Olesov, and V. A. Drozdenko, Titan v Novoy Tekhnike (Moscow: Metallurgiya: 1979) (in Russian).
  3. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine (Berlin: Springer: 2001). Crossref
  4. A. V. Boguslaev, Al. A. Oleinik, An. A. Oleinik, D. V. Pavlenko, and S. A. Subbotin, Progressivnye Tekhnologii Modelirovaniya, Optimizatsii i Intellektual'noy Avtomatizatsii Etapov Zhiznennogo Tsikla Aviatsionnykh Dvigateley (Zaporozhye: Motor Sich: 2009) (in Russian).
  5. A. F. Aksenov, I. E. Polishchuk, E. A. Kul’gavyy, and A. S. Sin’kovskiy, Trenie i Iznos, 3, № 3: 422 (1982) (in Russian).
  6. V. M. Fedirko and I. M. Pohreliuk, Azotuvannya Tytanu ta Yogo Splaviv (Kyiv: Naukova Dumka: 1995) (in Ukrainian).
  7. S. Aich and K. S. Ravi Chandran, Metall. Mater. Trans. A, 33, Iss. 11: 3489 (2002). Crossref
  8. O. Tkachuk, Ya. Matychak, I. Pohrelyuk, and V. Fedirko, Metallofiz. Noveishie Tekhnol., 36, No. 8: 1079 (2014). Crossref
  9. W. Sha, H. Ali, and X. Wu, Surf. Coat. Technol., 202, Iss. 24: 5832 (2008). Crossref
  10. M. Mizuno, I. Tanaka, and H. Adachi, Phys. Rev. B: Condens. Matter, 59, Iss. 23: 15033 (1999). Crossref
  11. A. G. Suslov, Inzhenernyy Zhurnal, No. 1: 6 (2000) (in Russian).
  12. I. M. Pohreliuk, Kh. B. Vasyliv, V. M. Fedirko, and O. V. Samborskyi, Fiz.-Khim. Mekhanika Materialiv, No. 3: 57 (2010) (in Ukrainian).
  13. A. A. Aliev, V. P. Bulgakov, and B. S. Prikhod'ko, Vestnik Astrakhanskogo Gosudarstvennogo Tekhnicheskogo Universiteta, No. 1: 8 (2004) (in Russian).
  14. V. V. Poroshin, Osnovy Kompleksnogo Kontrolya Topografii Poverkhnosti Detaley (Moscow: Mashinostroenie: 2007) (in Russian).
  15. S. S. Diachenko and I. V. Ponomarenko, Progresyvni Tekhnologii i Systemy Mashynobuduvannya, 47, No. 1: 128 (2014) (in Ukrainian).
  16. J. Kim, E. Lim, and Y. Jung, J. Cent. South Univ., No. 1: 155 (2012). Crossref
  17. V. N. Fedirko and I. N. Pogrelyuk, Titan, No. 3: 31 (2011) (in Russian).
  18. I. M. Pohreliuk, V. M. Fedirko, and O. V. Samborskyi, Naukovi Notatky, No. 31: 265 (2011) (in Ukrainian).
  19. L. I. Muravsky, A. B. Kmet', and T. I. Voronyak, Opt. Lasers Eng., 50, Iss. 11: 1508 (2012). Crossref