Mechanical Behaviour of the Porous and Foam Aluminium in Conditions of Compression: Determination of Key Mechanical Characteristics

O. V. Byakova$^{1}$, A. O. Vlasov$^{1}$, M. V. Semenov$^{1}$, O. V. Zatsarna$^{2}$, S. V. Gnyloskurenko$^{3}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Physical-and-Technological Institute of Metals and Alloys NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 23.07.2017. Download: PDF

The paper emphasizes harmonized recommendations for mechanical tests of highly-porous aluminium and aluminium foam to be applicable for analysing their compression response under quasi-static loading as well as determining reliable and reproducible results essentially required for practice problems of engineering design. Key mechanical parameters are designated and specified by considering distinctive features of deformation patterns indicative of porous aluminium and aluminium foam with a cellular structure. Special attention is paid to the problem related to inhomogeneous deformation of the above-mentioned materials, resulting in variation of quasi-elastic structural stiffness as well as shape and length of plateau regime of the stress–strain curve. Application of the harmonized recommendations is demonstrated with using several kinds of foam aluminium fabricated in line with different processing route. Using the above recommendation, significant effect of processing additives on micromechanism of deformation and, in turn, on macroscopic compressive response of Al foams resulted from contamination of the cell wall material by side products is shown and clarified.

Key words: porous metals, metallic foams, compression test, quasi-static loading.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i10/1363.html

DOI: https://doi.org/10.15407/mfint.39.10.1363

PACS: 61.43.Gt, 62.20.D-, 81.05.Rm, 81.40.Jj, 81.40.Lm, 81.70.Bt, 83.80.Iz

Citation: O. V. Byakova, A. O. Vlasov, M. V. Semenov, O. V. Zatsarna, and S. V. Gnyloskurenko, Mechanical Behaviour of the Porous and Foam Aluminium in Conditions of Compression: Determination of Key Mechanical Characteristics, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1363—1375 (2017)


REFERENCES
  1. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G Wadley, Metal Foams: A Design Guide (Boston: Butterworth Heinemann: 2000).
  2. J. Banhart, Prog. Mater. Sci., 46, No. 6: 559 (2001). Crossref
  3. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge: Cambridge University Press: 1997).
  4. V. Crupi, G. Epasto, and E. Guglielmino, Metals, 1, No. 1: 98 (2011). Crossref
  5. J. Banhart, Adv. Eng. Mater., 15, No. 3: 82 (2013). Crossref
  6. T. Nakamura, S. V. Gnyloskurenko, K. Sakamoto, A. V. Byakova, and R. Ishikava, Mater. Trans., 43, No. 5: 1191 (2002). Crossref
  7. S. V. Gnyloskurenko, T. Nakamura, A. V. Byakova, Y. N. Podrezov, R. Ishikawa, and M. Maeda, Can. Metall. Q, 44, No. 1: 7 (2005). Crossref
  8. O. V. Byakova, A. A. Vlasov, S. V. Gnyloskurenko, and I. Kartuzov, Sposib Oderzhannya Spinenykh Zlyvkiv z Alyuminiyu ta Alyuminiyevykh Splaviv (Method for Making the Blocks of Foamed Aluminium/Aluminium Alloys): Patent 104367UA. MKI, C22C 1/08, 21/00 (Publ. 27. 01. 14, Bul. No. 2) (2014) (in Ukrainian).
  9. L. J. Gibson, Ann. Rev. Mater. Sci., 30: 191 (2000). Crossref
  10. D. Kritz, B. Foroughi, R. Faure, and H. P. Degisher, Mater. Sci. Technol., 16, Nos. 7–8: 792 (2000). Crossref
  11. A. E. Markaki and T. W. Clyne, Acta Mater., 49, No. 9: 1677 (2001). Crossref
  12. A. Byakova, S. Gnyloskurenko, A. Sirko, Y. Milman, and T. Nakamura, Mater. Trans., 47, No. 9: 2131 (2006). Crossref
  13. A. V. Byakova, S. V. Gnyloskurenko, and T. Nakamura, Metals, 2, No. 2: 95 (2012). Crossref
  14. A. Byakova, I. Kartuzov, S. Gnyloskurenko, and T. Nakamura, Adv. Mater. Sci. Eng., 2014: 9 (2014). Crossref
  15. U. Ramamurty and A. Paul, Acta Mater., 52, 4:869 (2004). Crossref
  16. R. Pippan, C. Motz, B. Kriszt, B. Zettl, H. Mayer, S. Stanzl-Tschegg, F. Simancik, and J. Kovacik, Handbook of Cellular Metals: Production, Processing, Applications (Eds. H.-P. Degischer and B. Kriszt) (Weinheim, Germany: Wiley VCH: 2002), p. 179.
  17. U. Martin, U. Mosler, D. Lehmhus, A. Müler, and G. Heinzel, Proc. of Porous Metals and Metal Foaming Technology MetFoam-2005 (Sept. 21–23, 2005) (Kyoto: JIM: 2006), p. 495.
  18. Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenstedt, and A. G. Evans, Acta Mater., 45, No. 12: 5245 (1997). Crossref
  19. A. E. Simone and L. J. Gibsons, Acta Mater., 46, No. 11: 3929 (1998). Crossref
  20. H. Harders, K. Huper, and J. Rösler, Acta Mater., 53, No. 5: 1335 (2005). Crossref
  21. I. Jeon and T. Asahina, Acta Mater., 53, No. 12: 3415 (2005). Crossref
  22. H. Toda, N. Kuroda, T. Ohgaki, M. Kobayashi, T. Akahori, M. Niinomi, T. Kobayashi, K. Uesugi, K. Makii, and Y. Aruga, Proc. of Porous Metals and Metal Foaming Technology MetFoam-2005 (Sept. 21–23, 2005) (Kyoto: JIM: 2006), p. 409.
  23. T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T. G. Nieh, and K. Higashi, Scr. Mater., 40, No. 8: 921 (1999). Crossref
  24. A. Paul and U. Ramamurty, Mater. Sci. Eng. A, 281, Nos. 1–2: 1 (2000). Crossref
  25. K. A. Dannemann and J. Lankford Jr., Mater. Sci. Eng. A, 293, Nos. 1–2: 157 (2000). Crossref
  26. U. Krupp, J. Aegerter, A. Ohrndorf, T. Guillen, A. Danninger, T. Hipke, J. Hohlfeld, and M. Reinfried, Proc. of Porous Metals and Metallic Foams MetFoam-2007 (Sept. 5–7, 2007) (Montreal: DEStech Publications, Inc.: 2007), p. 407.