Temperature Evolution of Charge Carrier Density in the Centre of the Brillouin Zone of Fe(Se,Te) Superconductor

Yu. V. Pustovit$^{1}$, V. Brouet$^{2}$, D. A. Chareev$^{3,4,5}$, O. A. Kordyuk$^{1,6}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
$^{3}$Institute of Experimental Mineralogy, Russian Academy of Sciences, 4 Academician Osypyan Str., 142432 Chernogolovka, Moscow Region, Russia
$^{4}$Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
$^{5}$Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Republic of Tatarstan, Russia
$^{6}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.01.2018. Download: PDF

A characteristic feature of the electronic structure of iron-based superconductors is the shift of experimental electronic bands in comparison to the results of calculations. The temperature dependence of the band structure for FeSe can manifest the mechanism of such shifts, but different studies give opposite directions for these shifts in the centre of the Brillouin zone. In this paper, we report downward shift of both $d_{xz}$ and $d_{yz}$ bands in $Z$ point within the temperature range 20–160 K. Together with the results of evolution of the electronic structure in $A$ point, such shifts should lead to a break of parity between electron and hole charge carriers that can be interpreted as an increase of electron-carrier density with increasing temperature.

Key words: angle resolved photoemission spectroscopy (ARPES), curvature method, electronic structure, iron-based superconductors, FeSe.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i02/0139.html

DOI: https://doi.org/10.15407/mfint.40.02.0139

PACS: 74.20.Mn, 74.25.Jb, 74.70.Xa, 78.70.-g, 79.60.Bm, 82.80.Pv

Citation: Yu. V. Pustovit, V. Brouet, D. A. Chareev, and O. A. Kordyuk, Temperature Evolution of Charge Carrier Density in the Centre of the Brillouin Zone of Fe(Se,Te) Superconductor, Metallofiz. Noveishie Tekhnol., 40, No. 2: 139—146 (2018)

  1. Yu.  V. Pustovit and O.  A. Kordyuk, Usp. Fiz. Met., 18, No. 1: 1 (2017) (in Ukrainian). Crossref
  2. X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, J. Phys. Condensed Matter, 27, No. 18: 183201 (2015). Crossref
  3. M. V. Sadovskii, Physics-Uspekhi, 59, No. 10: 1201 (2016). Crossref
  4. Y. V. Pustovit and A. A. Kordyuk, Low Temp. Phys., 42: 995 (2016). Crossref
  5. A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B, 78: 134514 (2008). Crossref
  6. M. V. Sadovskii, Physics-Uspekhi, 59, No. 10: 947 (2016). Crossref
  7. M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B, 91: 199905 (2015). Crossref
  8. M. Watson, T. Kim, A. A. Haghighirad, S. F. Blake, N. R. Davies, M. Hoesch, T. Wolf, and A. I. Coldea, Phys. Rev. B, 92: 121108(R) (2015). Crossref
  9. J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S. Thirupathaiah, A. U. B. Wolter, L. Harnagea, A. N. Yaresko, A. N. Vasiliev, D. A. Chareev, A. E. Böhmer, F. Hardy, T. Wolf, C. Meingast, E. D. L. Rienks, B. Büchner, and S. V. Borisenko, Phys. Rev. B, 89: 220506(R) (2014). Crossref
  10. A. Fedorov, A. Yaresko, T. K. Kim, Y. Kushnirenko, E. Haubold, T. Wolf, and M. Hoesch, A. Grüneis, B. Büchner, and S. V. Borisenko, Scientific Reports, 6: 36834 (2016). Crossref
  11. A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, A. N. Yaresko, B. Buechner, and S. V. Borisenko, J. Supercond. Nov. Magn., 26: 2837 (2013). Crossref
  12. M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, Phys. Rev. B, 82: 064504 (2010). Crossref
  13. V. B. Zabolotnyy, D. S. Inosov, D. V. Evtushinsky, A. Koitzsch, A. A. Kordyuk, G. L. Sun, J. T. Park, D. Haug, V. Hinkov, A. V. Boris, C. T. Lin, M. Knupfer, A. N. Yaresko, B. Böchner, A. Varykhalov, R. Follath, and S. V. Borisenko, Nature, 457: 569 (2009). Crossref
  14. V. Brouet, Ping-Hui Lin, Y. Texier, J. Bobroff, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, M. Casula, P. Werner, S. Biermann, F. Rullier-Albenque, A. Forget, and D. Colson, Phys. Rev. Lett., 110: 167002 (2013). Crossref
  15. L. Fanfarillo, J. Mansart, P. Toulmonde, H. Cercellier, P. Le Fevre, F. Bertran, B. Valenzuela, L. Benfatto, and V. Brouet, Phys. Rev. B, 94: 155138 (2016). Crossref
  16. H. Zhai, F. Wang, and D.-H. Lee, Phys. Rev. B, 80: 064517 (2009). Crossref
  17. J. C. Davis and D.-H. Lee, PNAS, 110, No. 44: 17623 (2013). Crossref
  18. L. C. Rhodes, M. D. Watson, A. A. Haghighirad, M. Eschrig, and T. K. Kim, Phys. Rev. B, 95: 195111 (2017). Crossref
  19. Y. Kushnirenko, A. A. Kordyuk, A. Fedorov, E. Haubold, T. Wolf, B. Böchner, and S. V. Borisenko, Phys. Rev. B, 96: 100504 (2017). Crossref
  20. Yu.  V. Pustovit, V.  V. Bezguba, and A.  A. Kordyuk, Metallofiz. Noveishie Tekhnol., 39, No. 6: 709 (2017) (in Ukrainian). Crossref
  21. Y. D. Chareev, E. Osadchii, T. Kuzmicheva, J. Y. Lin, S. Kuzmichev, O. Volkova, and A. Vasiliev, Cryst. Eng. Comm., 15, No. 10: 1989 (2013). Crossref