Thermal Fluctuations of Electromagnetic Field in the PVC Filled with Micro- and Nanodisperse Graphite

B. B. Kolupaev$^{1}$, B. S. Kolupaev$^{2}$, V. V. Levchuk$^{2}$, Yu. R. Maksymtsev$^{2}$, V. O. Sidletsky$^{2}$

$^{1}$Academician Stepan Demianchuk International University of Economics and Humanities, Department of Cybernetics, 4 Academician S. Demianchuk Str., 33027 Rivne, Ukraine
$^{2}$Rivne State University of Humanities, 12 Stepan Bandera Str., 33000 Rivne, Ukraine

Received: 23.11.2017. Download: PDF

Based on the statistical theory of electromagnetic processes, using the equation of balance of energy density, the features of behaviour of the polyvinylchloride (PVC) filled with micro- and nanodispersed graphite in electromagnetic field with frequency of 1–100 kHz and temperature range 298 K $\leq T \leq T_C$ + 10 K are analysed. As shown, in the range of graphite concentration 0 $\leq \varphi \leq$ 5.0 vol.%, there is a significant difference not only in the values, but also in the character of the temperature and concentration dependences of electrical conductivity of composite contained graphite synthesized by physical-chemical method and method of the chemical and electrophysical dispersion. Using the law of dissipation, both the relaxation nature and the quantitative interrelation between the electro- and thermophysical properties of investigated material are revealed.

Key words: nano- and microdisperse graphite, polyvinylchloride, fluctuations, dissipation, relaxation.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i02/0155.html

DOI: https://doi.org/10.15407/mfint.40.02.0155

PACS: 61.41.+e, 61.82.Pv, 72.80.Le, 72.80.Tm, 81.05.Lg, 82.35.Lr, 82.35.Np

Citation: B. B. Kolupaev, B. S. Kolupaev, V. V. Levchuk, Yu. R. Maksymtsev, and V. O. Sidletsky, Thermal Fluctuations of Electromagnetic Field in the PVC Filled with Micro- and Nanodisperse Graphite, Metallofiz. Noveishie Tekhnol., 40, No. 2: 155—167 (2018) (in Ukrainian)


REFERENCES
  1. Fizika Segodnya i Zavtra. Prognozy Nauki [Physics Today and Tomorrow. Forecasts of Science] (Ed. V. M. Tuchkevich) (Leningrad: Nauka: 1973) (in Russian).
  2. P. Debye, Izbrannye Trudy [Collected Papers] (Leningrad: Nauka: 1987) (Russian translation).
  3. B. S. Kolupaev, B. B. Kolupaev, O. M. Voloshyn, and V. V. Levchuk, Sposib Oderzhannya Geterogennykh Polimernykh System na Osnovi Nanodyspersnykh Metalevykh Napovnyuvachiv [Method of Synthesis of the Heterogeneous Polymer Systems Based on the Nanodispersed Metallic Fillers]: Patent 80988 UA. MPK (2006.01): CO8K3/22 (Publ. June 10, 2006, Bul. No. 11) (in Ukrainian).
  4. S. Zi, Fizika Poluprovodnikovykh Priborov [Physics of Semiconductor Devices] (Moscow: IL: 2004) (Russian translation).
  5. T. G. Lyashuk and B. B. Kolupaev, Surf. Eng. Appl. Elect., 48, Iss. 5: 487 (2012). Crossref
  6. B. B. Kolupaev, J. Eng. Phys. Thermophys., 85, Iss. 3: 684 (2012). Crossref
  7. L. A. Bulavin, Yu. F. Zabashta, and O. S. Svyechnikova, Fizychna Mekhanika Polimeriv [Physical Mechanics of Polymers] (Kyiv: VPTs KU: 2005) (in Ukrainian).
  8. B. B. Kolupaev, J. Eng. Phys. Thermophys., 80, Iss. 1: 188 (2007). Crossref
  9. Yu. L. Klimontovich, Statisticheskaya Fizika [Statistical Physics] (Moscow: Nauka: 1982) (in Russian).
  10. R. Haase, Termodinamika Neobratimykh Protsessov [Thermodynamics of Irreversible Processes] (Moscow: Mir: 1967) (Russian translation).
  11. A. D. Pomogaylo, A. S. Rozenberg, and I. E. Uflyand, Nanochastitsy Metallov v Polimerakh [Nanoparticles of Metals in Polymers] (Moscow: Khimiya: 2000) (in Russian).