Thermoelectric Properties of an Array of Carbon Nanotubes under Uniaxial Compression after Annealing

M. M. Nishchenko$^{1}$, H. Yu. Mykhailova$^{1}$, B. V. Kovalchuk$^{1}$, I. M. Sydorchenko$^{1}$, V. V. Anikeev$^{1}$, M. Ya. Shevchenko$^{1}$, V. M. Poroshyn$^{2}$, G. P. Prykhodko$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
$^{3}$O.O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine

Received: 27.11.2017. Download: PDF

The influence of annealing in a vacuum up to $10^5$ Pa in temperature range 300–1150С on the electrical conductivity, thermopower, and elastic characteristics of the multiwall carbon nanotubes (MWCNT) array is studied. As shown, in case of uniaxial deformation, the oriented packing of MWCNT occurs that leads to decreasing of the Seebeck coefficient up to 15%, and the annealing at a temperature under 950°C contributes to its reduction by 5% for all compression ratios.

Key words: carbon nanotubes, high-temperature annealing, electrical conductivity, thermopower, Seebeck coefficient.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i02/0169.html

DOI: https://doi.org/10.15407/mfint.40.02.0169

PACS: 62.23.Pq, 62.25.-g, 72.20.Pa, 72.80.Rj, 73.50.Lw, 81.07.Oj, 81.40.Vw

Citation: M. M. Nishchenko, H. Yu. Mykhailova, B. V. Kovalchuk, I. M. Sydorchenko, V. V. Anikeev, M. Ya. Shevchenko, V. M. Poroshyn, and G. P. Prykhodko, Thermoelectric Properties of an Array of Carbon Nanotubes under Uniaxial Compression after Annealing, Metallofiz. Noveishie Tekhnol., 40, No. 2: 169—182 (2018) (in Russian)


REFERENCES
  1. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47, No. 19: 727 (1993). Crossref
  2. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer-Verlag: 2001). Crossref
  3. A. V. Dmitriev and I. P. Zvyagin, Uspekhi Fizicheskikh Nauk, 180, No. 8: 821 (2010) (in Russian). Crossref
  4. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater., 22: 3970 (2010). Crossref
  5. A. A. Snarskij, A. K. Sarychev, I. V. Bezsudnov, and A. N. Lagar'kov, Fizika i Tekhnika Poluprovodnikov, 46, Iss. 5: 677 (2012) (in Russian).
  6. A. V. Eletskij, Uspekhi Fizicheskikh Nauk, 172, No. 4: 401 (2002) (in Russian). Crossref
  7. L. P. Bulat and D. A. Pshenaj-Severin, Fizika Tverdogo Tela, 52, Iss. 3: 452 (2010) (in Russian).
  8. A. V. Shevel'kov, Uspekhi Khimii, 77, No. 1: 3 (2008) (in Russian).
  9. L. P. Bulat, L. V. Bochkova, I. A. Nefedova, and R. Akhyska, Nauchno-Tekhnicheskiy Vestnik Informatsionnykh Tekhnologiy, Mekhaniki i Optiki, No. 4: 48 (2014) (in Russian).
  10. H. Kajiura, A. Nandyala, and A. Bezryadin, Carbon, 43: 1317 (2005). Crossref
  11. N. A. Azarenkov, V. M. Beresnev, and A. D. Pogrebnyak, Nanomaterialy, Nanopokrytiya, Nanotekhnologii: Uchebnoe Posobie (Kharkov: KhNU im. V. N. Karazina: 2009) (in Russian).
  12. A. S. Lobach, N. G. Spitsyna, S. V. Terekhov, and E. D. Obraztsova, Fizika Tverdogo Tela, 44, Iss. 3: 457 (2002) (in Russian).
  13. P. N. Gnevko, A. V. Okotrub, L. G. Bulushueva, and I. V. Yushina, Fizika Tverdogo Tela, 48, Iss. 5: 947 (2006) (in Russian).
  14. E. A. Koval'skaya, N. T. Kartel', G. P. Prikhod'ko, and Yu. I. Sementsov, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 3, No. 1: 20 (2012) (in Russian).
  15. D. A. Usanov, A. V. Skripal', and A. V. Romanov, Zhurnal Tekhnicheskoy Fiziki, 84, Iss. 6: 86 (2014) (in Russian).
  16. R. A. Brazhe and V. S. Nefyodov, Fizika Tverdogo Tela, 54, Iss. 7: 1435 (2012) (in Russian).
  17. A. V. Mavrinskiy and E. M. Baytinger, Fizika i Tekhnika Poluprovodnikov, 43, Iss. 4: 501 (2009) (in Russian).
  18. E. A. Belenkov and Yu. A. Zinatulina, Vestnik Chelyabinskogo Gosudarstvennogo Universiteta, No. 25: 32 (2005) (in Russian).
  19. G. Yu. Mikhailova, M. M. Nishchenko, I. M. Sidorchenko, V. V. Anikeev, B. V. Kovalchuk, V. M. Lazorenko, V. N. Pimenov, Yu. F. Syskaya, V. I. Tovtin, D. E. Aznakaeva, V. N. Poroshin, and G. P. Prikhodko, Sbornik Nauchnykh Trudov VI Mezhdunarodnoy Nauchnoy Konferentsii 'Funktsional'naya Baza Nanoelektroniki' (30 September–4 October, 2013, Alushta), p. 32 (in Russian).
  20. Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus, Chem. Phys. Lett., 398, Nos. 1–3: 87 (2004). Crossref
  21. M. M. Nyshchenko, G. Yu. Mikhaylova, E. I. Arkhipov, V. Yu. Koda, G. P. Prikhod'ko, and Yu. I. Sementsov, Nanosistemi, Nanomateriali, Nanotehnologii, 7, No. 3: 717 (2009) (in Russian).
  22. Y. Wang, J. Wu, and F. Wei, Carbon, 41, No. 15: 2939 (2003). Crossref
  23. M. Yudasaka, H. Kataura, and T. Ichihashi, Nano Lett., 1, No. 9: 487 (2001). Crossref
  24. A. Koshio, M. Yudasaka, and S. Iijima, J. Phys. Chem. C, 111, No. 1: (2007). Crossref
  25. M. Yudasaka, T. Ichihashi, D. Kasuya, H. Kataura, and S. Iijima, Carbon, 41, No. 6: 487 (2003). Crossref
  26. R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, Carbon, 39: 1681 (2001). Crossref
  27. W. Huang, Ya. Wang, G. Luo, and F. Wei, Carbon, 41: 2585 (2003). Crossref
  28. Y. A. Kim, T. Hayashi, K. Osawa, M. S. Dresselhaus, and M. Endo, Chem. Phys. Lett., 380, No. 3: 319 (2003). Crossref
  29. I. Mazov, V. L. Kuznetsov, I. A. Simonova, A. I. Stadnichenko, A. V. Ishchenko, A. I. Romanenko, E. N. Tkachev, and O. B. Anikeeva, Appl. Surf. Sci., 258: 6272 (2012). Crossref
  30. L. I. Anatychuk, Termoelementy i Termoelektricheskie Ustroystva (Kiev: Naukova Dumka: 1979) (in Russian).
  31. Y. Wang, J. Wu, and F. Wei, Carbon, 41, No. 15: 2939 (2003). Crossref
  32. V. V. Anikeev,B. V. Kovalchuk, V. M. Lazorenko, G. Yu. Mikhailova, M. M. Nishchenko, V. N. Pimenov, G. P. Prikhod'ko, S. I. O. Sadykhov, and V. I. Tovtin, Perspektivnye Materialy, No. 11: 26 (2015) (in Russian).
  33. V. V. Anikeev, B. V. Kovalchuk, V. M. Lazorenko, G. Yu. Mikhailova, M. M. Nishchenko, V. N. Pimenov, I. M. Sidorchenko, Yu. F. Suskaya, and V. I. Tovtin, Inorganic Materials: Applied Research, 5, Iss. 2: 138 (2014). Crossref
  34. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature Letters, 438, No. 10: 197 (2005). Crossref
  35. A. R. Blythe and D. Bloor, Elektricheskie Svoystva Polimerov [Electrical Properties of Polymers] (Moscow: Fizmatlit: 2008) (Russian translation).
  36. A. V. Dolbin, V. B. Esel'son, V. G. Gavrilko, V. G. Manzhelii, N. A. Vinnikov, R. M. Basnukaeva, I. I. Yaskovets, I. Yu. Uvarova, and B. A. Danilchenko, Low Temp. Phys., 40: 246 (2014). Crossref
  37. L. I. Ivanov , V. M. Lazorenko, G. Yu. Mikhailova, M. M. Nishchenko, Yu. M. Platov, S. I. O. Sadykhov, and V. I. Tovtin, Perspektivnye Materialy, No. 1: 48 (2013) (in Russian).
  38. S. V. El'tsov and N. A. Vodolazkaya, Fizicheskaya i Kolloidnaya Khimiya: Uchebnoe Posobie (Kharkov: Khar'kovskiy Natsional'nyy Universitet im. V. N. Karazina: 2005) (in Russian).
  39. M. M. Nishchenko, N. A. Shevchenko, V. I. Patoka, V. L. Svechnikov, I. E. Fomenko, D. V. Schur, and A. G. Dubovoy, VIII International Conference ICHMS (14–20 September, 2003, Sudak, Ukraine), p. 614 (in Russian).