Mechanism of Embrittlement of Metals by Surface-Active Elements

S. M. Teus$^{1}$, B. D. Shanina$^{2}$, A. A. Konchits$^{2}$, G. S. Mogilny$^{1}$, V. G. Gavriljuk$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 09.11.2017. Download: PDF

The nature of mechanical degradation of metals caused by surface-active elements is studied based on the effects of iodine and gallium in austenitic steels and using $ab initio$ calculations and experimental measurements of electronic structure, X-ray diffraction, mechanical spectroscopy, and mechanical tests. A significant increase in the density of electron states at the Fermi level for iodine in f.c.c. iron is shown that is in consistent with the measurements of the increased concentration of free electrons caused by iodine in austenitic steels. Consequently, the increase in mobility of dislocations by iodine and gallium in austenitic steels is revealed. The localization of the enhanced plastic deformation is discussed as a condition for brittleness. The obtained results are at variance with the widely spread opinion about the determining role of surface energy in a liquid-metal brittleness and, instead, are interpreted based on the correlation between atomic interactions and dislocation properties. Applicability of the available HELP and AIDE hypotheses is discussed.

Key words: f.c.c. iron, austenitic steel, surfactants, electronic structure, dislocations, mechanical properties.



PACS: 61.72.Hh, 61.72.Yx, 62.20.M-, 62.40.+i, 68.35.Dv, 71.20.Be, 76.30.-v

Citation: S. M. Teus, B. D. Shanina, A. A. Konchits, G. S. Mogilny, and V. G. Gavriljuk, Mechanism of Embrittlement of Metals by Surface-Active Elements, Metallofiz. Noveishie Tekhnol., 40, No. 2: 201—218 (2018)

  1. W. H. Johnson, Proc. R. Soc. Lond., 23: 168 (1874). Crossref
  2. J. C. Liynn, W. R. Warke, and P. Gordon, Mat. Sci. Eng., 18: 51 (1975). Crossref
  3. P. A. Rehbinder, Communications of VI Congress of Russian Physicists (Moscow: OGIZ: 1928), p. 29.
  4. B. F. Gromov, Yu. S. Belomitsev, and E. I. Yefimov, Nuclear Eng. Design, 173: 207 (1997). Crossref
  5. V. I. Lichtman, E. D. Shukin, and P. A. Rehbinder, Physical-Chemical Mechanics of Metals (Moscow: Academy of Sci. USSR: 1962) (in Russian).
  6. E. D. Shchukin and P. A. Rehbinder, Selected Studies. Surface Phenomena in Disperse Systems. Physical-Chemical Mechanics (Moscow: Nauka: 1979) (in Russian).
  7. M. G. Nicolas and C. F. Old, J. Mater. Sci., 14: 1 (1979). Crossref
  8. A. I. Malkin, Z. M. Polukarova, V. M. Zanozin et al., Environment-Induced Cracking of Materials: Chemistry, Mechanics and Mechanisms (Eds. S. A. Shipilov, R. H. Jones, J.-M. Olive, and R. B. Rebak) (Oxford: Elsevier Science: 2008), p. 497. Crossref
  9. J.-B. Vogt, I. Serre, A. Verleene, and A. Legris, Environment-Induced Cracking of Materials: Chemistry, Mechanics and Mechanisms (Eds. S. A. Shipilov, R. H. Jones, J.-M. Olive, and R. B. Rebak) (Oxford: Elsevier Science: 2008), p. 481. Crossref
  10. C. N. Vigilante, S. Bartolucci, J. Izzo, M. Witherell, and S. B. Smith, Mater. Manufact. Processes, 27: 835 (2012). Crossref
  11. P. A. Rehbinder and E. D. Shchukin, Progr. Surf. Sci., 3: 97 (1972). Crossref
  12. A. Legris, G. Nicaise, J.-B. Vogt, and J. Foct, J. Nucl. Mater., 301: 70 (2002). Crossref
  13. D. Gorse, S. Goryachev, and T. Auger, Proc of 3rd Intern. Symp. on Material Chemistry in Nuclear Environment (Japan Atomic Energy Research Institute, Tsukuba, Japan, 2003), p. 63.
  14. A. I. Malkin, Colloid J., 74: 239 (2012). Crossref
  15. V. V. Belousov, J. Am. Ceram. Soc., 79: 1703 (1996). Crossref
  16. E. E. Glickman and M. Nathan, J. Appl. Phys., 85: 3185 (1999). Crossref
  17. N. S. Stoloff, R. G. Davies, and T. L. Johnston, Environment-Sensitive Mechanical Behaviour (Eds. A. R. C. Westwood and N. S. Stoloff) (New York: Gordon and Breach: 1966), p. 613.
  18. S. P. Lynch, Metal Sci., 15: 463 (1981). Crossref
  19. M. H. Kamdar, Prog. Mater. Sci., 15: 289 (1973). Crossref
  20. M. H. Kamdar, Advanced Research Strength and Fracture of Materials: Proc. 4th Intern Conf Fract. (Canada: University of Waterloo: 1977), vol. 1, p. 387.
  21. A. Kelly, W. R. Tyson, and A. H. Cottrell, Philos. Mag., 15: 567 (1967). Crossref
  22. S. Ashok, N. S. Stoloff, M. E. Glicksman, and T. Slavin, Scr. Metall., 15: 331 (1981). Crossref
  23. T. P. Slavin and N. S. Stoloff, Mat. Sci. Eng., 68: 55 (1984). Crossref
  24. H. Nichols and W. Rostoker, Trans. AIME, 224: 1258 (1962).
  25. P. C. Hancock and M. B. Ives, Canadian J. Metallurgy Mater. Sci., 10: 207 (1971).
  26. M. M. Shea and N. S. Stoloff, Mater. Sci. Eng., 12: 245 (1973). Crossref
  27. E. I. Rabkin, L. S. Shvindlerman, and B. V. Straumal, Intern. J. Modern. Phys. B, 5: 2989 (1991). Crossref
  28. K. Tai, L. Feng, and Sh. J. Dillon, J. Appl. Phys., 113: 193507 (2013). Crossref
  29. S. P. Lynch, Acta Metall., 32: 79 (1984). Crossref
  30. S. P. Lynch, Acta Metall., 36: 2639 (1988). Crossref
  31. S. P. Lynch, Metall. Mater. Trans. A, 44: 1209 (2013). Crossref
  32. S. P. Linch, Cor. Rev., 30: 105 (2012).
  33. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Cor. Rev., 31: 33 (2013).
  34. W. S. Ryu, S. I. Hong, Y. Choi, Y. H. Kang, and C. S. Rim, J. Korean Nuclear Society, 17: 193 (1985).
  35. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Wien, Austria: Techn. Universität Wien: 2001).
  36. P. Hohenberg and W. Kohn, Phys. Rev. B, 136: 864 (1964). Crossref
  37. W. Kohn and L. J. Sham, Phys. Rev. A, 140: 1133 (1965). Crossref
  38. M. Weinert, E. Wimmer and A. J. Freeman. Phys. Rev. B, 26: 4571 (1982). Crossref
  39. J. P. Perdew, S. Burke, and M. Ernzernhoff, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  40. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B, 49: 16223 (1994). Crossref
  41. J. H. Pifer and R. T. Longo, Phys. Rev. B, 4: 3797 (1971). Crossref
  42. G. Gavriljuk, S. P. Efimenko, Ye. E. Smuk, S. Yu. Smuk, B. D. Shanina, N. P. Baran, and V. M. Maksimenko, Phys. Rev. B, 48: 3224 (1993). Crossref
  43. B. D. Shanina, V. G. Gavriljuk, S. P. Kolesnik, and V. N. Shivanyuk, J. Phys. D: Appl. Phys., 32: 298 (1999). Crossref
  44. Y. Tsunoda, J. Phys.: Condensed Matter, 1: 10427 (1989). Crossref
  45. E. Sjostedt and L. Nordstrom, Phys. Rev. B, 66: 014447 (2002). Crossref
  46. I. A. Abrikosov, I. A. Kissavos, F. Liot, B. Alling, S. I. Simak, O. Peil, and A. V. Ruban, Phys. Rev. B, 76: 014434 (2007). Crossref
  47. D. E. Jiang and E. Carter, Phys. Rev. B, 67: 214103 (2003). Crossref
  48. H. C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B, 60: 3839 (1999). Crossref
  49. M. Acet, H. Zaehres, E. F. Wassermann, and W. Pepperhoff, Phys. Rev. B, 49: 6012 (1994). Crossref
  50. W. Keune, T. Ezawa, W. A. A. Macedo, U. Glos, K. P. Schletz, and U. Kirschbaum, Physica B, 161: 269 (1989). Crossref
  51. C. Carbone, G. S. Sohal, E. Kisker, and E. F. Wassermann, J. Appl. Phys., 63: 3499 (1988). Crossref
  52. A. Kokalj, J. Mol. Graph. Model., 17: 176 (1999). Crossref
  53. G. Schoeck, E. Bisogni, and J. Shyne, Acta Metall., 12: 1466 (1964). Crossref
  54. A. Rivière, V. Amirault, and J. Woirgard, Nuovo Cimento, 33: 398 (1976). Crossref
  55. V. G. Gavriljuk, V. N. Shivanyuk, and J. Foct, Acta Mater., 51: 1293 (2003). Crossref
  56. M. L. Martin, I. M. Robertson, and P. Sofronis, Acta Mater., 59: 3680 (2011). Crossref
  57. Y. Tomota, Y. Xia, and K. Inoue, Acta Mater., 46: 1577 (1998). Crossref
  58. R. B. McLellan, J. Phys. Chem. Sol., 49: 1213 (1988). Crossref
  59. A. A. Smirnov, Reports of Academy of Sciences of UkrSSR, 7: 66 (1991).
  60. Y. Fukai and N. Okuma, Jpn. J. Appl. Phys., 32: L1256 (1993). Crossref
  61. V. G. Gavriljuk, V. N. Bugaev, Yu. N. Petrov, A. V. Tarasenko, and B. Z. Yanchitsky, Scr. Mater., 34: 903 (1996). Crossref
  62. I. M. Robertson and H. K. Birnbaum, Acta Metal., 34: 353 (1986). Crossref
  63. H. K. Birnbaum and P. Sofronis. Mater Sci. Eng. A, 176: 191 (1994). Crossref
  64. P. Sofronis, Y. Liang, and N. Aravas, Eur. J. Mech. A/Solids, 20: 857 (2001). Crossref
  65. I. M. Robertson, H. K. Birnbaum, and P. Sofronis, Dislocation in Solids. Ch. 91 (Eds. J. P. Hirth and L. Kubin) (New York: Elsevier: 2009), p. 250.
  66. V. G. Gavriljuk, B. D. Shanina, V. N. Syvanyuk, and S. M. Teus, J. Appl. Phys., 108: 083723 (2010). Crossref
  67. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Proceedings of the 2012 International Hydrogen Conference (September 9–12, 2012, Grand Teton National Park, Jackson Lake Lodge, Wyoming, USA) (Eds. B. P. Somerday and P. Sofronis) (New York: ASME Press: 2014), p. 67.
  68. P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum, Acta Mater., 46: 1749 (1998). Crossref
  69. V. G. Gavriljuk, V. A. Duz', N. D. Aphanasyev et al., Corrosion-Resistant Austenitic Steel: Patent USSR No. 1507854 (15.05.1989).
  70. A. L. Berezina, O. A. Molebny, and A. V. Kotko, Acta Phys. Polon. Series A, 128: 564 (2015). Crossref