Explosive Crystallization of Films of Amorphous Cobalt on a Sublayer of Carbon

E. N. Zubarev$^{1}$, O. Yu. Devizenko$^{1}$, V. V. Kondratenko$^{1}$, D. V. Sevriukov$^{1}$, V. A. Sevryukova$^{1}$, O. S. Garbuz$^{2}$, T. M. Sabov$^{3}$, O. V. Dubikovskyi$^{3}$, O. S. Oberemok$^{3}$, V. P. Melnik$^{3}$

$^{1}$National Technical University ‘Kharkiv Polytechnic Institute’, 21 Kyrpychov Str., 61002 Kharkiv, Ukraine
$^{2}$B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
$^{3}$V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 18.01.2018. Download: PDF

The mechanism of explosive crystallization of the amorphous cobalt films grown on an amorphous carbon by the DC-magnetron sputtering is studied by means of transmission electron microscopy, electron diffraction, small-angle X-ray diffraction, and secondary ion mass spectrometry. As established, the operating C-magnetron during both the deposition of the cobalt layer as well as the decrease in the cobalt-deposition rate result to an increase of the nominal thickness of the cobalt layer, $t_{Co,nom}$, at which it is in an amorphous–cluster state with a small fraction of the nanocrystalline cobalt phase. An increase of the nominal thickness of cobalt to a boundary value of $t_{bd} \cong$ 5.0 nm leads to the appearance of both crystalline regions characterising the normal crystallization (stacking faults) and extensive regions with the zone axis [0001] characterising the explosive crystallization (without stacking faults). An increase in the nominal thickness of existence of an amorphous–cluster phase to a critical value of $t_{cr} \cong$ 6.0 nm is accompanied with cobalt crystallization by means of the mechanism of explosive crystallization, because of which a highly textured h.c.p.-Co lattice film with an [0001] axis perpendicular to the substrate is formed.

Key words: cobalt, amorphous–cluster state, explosive crystallization, transmission electron microscopy (TEM).

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0359.html

DOI: https://doi.org/10.15407/mfint.40.03.0359

PACS: 07.85.Fv, 61.05.cm, 61.05.J-, 68.37.Lp, 68.49.Sf, 81.15.Cd, 82.80.Ms

Citation: E. N. Zubarev, O. Yu. Devizenko, V. V. Kondratenko, D. V. Sevriukov, V. A. Sevryukova, O. S. Garbuz, T. M. Sabov, O. V. Dubikovskyi, O. S. Oberemok, and V. P. Melnik, Explosive Crystallization of Films of Amorphous Cobalt on a Sublayer of Carbon, Metallofiz. Noveishie Tekhnol., 40, No. 3: 359—379 (2018) (in Russian)


REFERENCES
  1. K. Sudzuki, Kh. Fudzimori, and K. Khasimoto, Amorfnye Metally (Moscow: Metallurgiya: 1987) (Russian translation).
  2. V. A. Shklovskii and V. M. Kuz'menko, Sov. Phys. Usp., 32: 163 (1989). Crossref
  3. V. M. Kuz'menko, Uspekhi Sovremennoy Radioelektroniki, No. 5: 17 (2002) (in Russian).
  4. H.-D. Geiler, E. Glaser, G. Götz, and M. Wagner, J. Appl. Phys., 59, No. 9: 3091 (1986). Crossref
  5. C. Grigoropoulos, M. Rogers, S. H. Ko, A. A. Golovin, and B. J. Matkowsky, Phys. Rev. B, 73, No. 18: 184125 (2006). Crossref
  6. L. Nikolova, M. J. Stern, J. M. MacLeod, B. W. Reed, H. Ibrahim, G. H. Campbell, F. Rosei, T. LaGrange, and B. J. Siwick, J. Appl. Phys., 116, No. 9: 093512 (2014). Crossref
  7. E. J. Albenze and P. Clancy, Molecular Simulation, 31, No. 1: 11 (2005). Crossref
  8. F. Falk and G. Andrä, J. Crystal Growth, 287, No. 2: 397 (2006). Crossref
  9. Ch.-Ch. Kuo, W.-Ch. Yeh, J.-B. Chen, and J.-Y. Jeng, Thin Solid Films, 515, No. 4: 1651(2006). Crossref
  10. Ch.-Ch. Kuo, J. Mater. Process. Technol., 209, No. 6: 2978 (2009). Crossref
  11. K. Ohdaira, N. Tomura, Sh. Ishii, and H. Matsumuraa, Electrochemical and Solid-State Letters, 14, No. 9: H372 (2011). Crossref
  12. K. Ohdaira, K. Sawada, N. Usami, S. Varlamov, and H. Matsumura, Jap. J. Appl. Phys., 51, No. 4: 10NB15 (2012).
  13. K. Ohdaira and H. Matsumura, Thin Solid Films, 524: 161 (2012). Crossref
  14. K. Ohdaira and H. Matsumura, J. Crystal Growth, 362: 149 (2013). Crossref
  15. V. Ya. Kogai, A. V. Vakhrushev, and A. Yu. Fedotov, JETP Letters, 95, No. 9: 454 (2012). Crossref
  16. L. I. Kveglis, V. A. Seredkin, and A. V. Kuzovnikov, JETP Letters, 82, No. 1: 23 (2005). Crossref
  17. V. Pore, M. Ritala, M. Leskelä, T. Saukkonen, and M. Järn, Crystal Growth & Design, 9, No. 7: 2974 (2009). Crossref
  18. S. A. Vekshinskii, Novyy Metod Metallograficheskogo Issledovaniya Splavov (Moscow–Leningrad: OGIZ: 1944) (in Russian).
  19. E. N. Zubarev, A. Yu. Devizenko, O. V. Penkov, V. V. Kondratenko, D. V. Sevriukov, V. A. Sevryukova, and I. A. Kopylets, Thin Solid Films, 622: 84 (2017). Crossref
  20. E. N. Zubarev, V. V. Kondratenko, Y. P. Pershyn, and V. A. Sevryukova, Thin Solid Films, 520: 314 (2011). Crossref
  21. A. Zolotaryov, Y. Bugayev, V. Samofalov, O. Devizenko, E. Zubarev, S. Martens, O. Albrecht, D. Gorlitz, and K. Nielsch, phys. status solidi (a), 208, No. 7: 1698 (2011). Crossref
  22. A. K. Petford-Long, M. B. Stearns, C. H. Chang, S. R. Nutt, D. G. Stearns, N. M. Ceglio, and A. M. Hawryluk, J. Appl. Phys., 61, No. 4: 1422 (1987). Crossref
  23. K. Holloway, K. B. Do, and R. Sinclair, J. Appl. Phys., 65, No. 2: 474 (1989). Crossref
  24. S. Yulin, T. Feigl, T. Kuhlmann, N. Keiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, J. Appl. Phys., 92: 1216 (2002). Crossref
  25. W. C. Shih and W. M. Stobbs, Ultramicroscopy, 32: 219 (1990). Crossref
  26. K. Holloway and R. Sinclar, J. Less-Common Met., 140: 139 (1988). Crossref
  27. D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, Y. P. Pershin, V. A. Sevryukova, and Y. A. Bugayev, Thin Solid Films, 513: 152 (2006). Crossref
  28. V. A. Chernov, N. I. Chkhalo, M. V. Fedorchenko, E. P. Kruglyakov, S. V. Mytnichenko, and S. G. Nikitenko, J. X-Ray Sci. Technol., 5: 65 (1995). Crossref
  29. Y. Bugayev, O. Devizenko, E. Zubarev, V. Sevryukova, and V. Kondratenko, Metallofiz. Noveishie Tekhnol., 30, No. 11: 1533 (2008) (in Russian).
  30. V. A. Chernov, N. I. Chkhalov, M. V. Fedorchenko, E. P. Kruglya, S. V. Mytnichenko, and S. G. Nikitenko, J. X-Ray Sci. Technol., 5: 389 (1995). Crossref
  31. B. S. Danilin and V. K. Sarychev, Magnetronnye Raspylitel'nye Sistemy (Moscow: Radio i Svyaz: 1982) (in Russian).
  32. Yu. P. Pershin, V. A. Sevryukova, E. N. Zubarev, A. S. Oberemok, V. P. Melnik, B. N. Romanyuk, V. G. Popov, and P. M. Litvin, Metallofiz. Noveishie Tekhnol., 35, No. 12: 1617 (2013) (in Russian).