Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications

Y. Al-Sayad, Z. Hadjoub, A. Doghmane

Badji Mokhtar University, BO 12, CP 23000 Annaba, Algeria

Received: 24.11.2017. Download: PDF

Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal $V$. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal ($V_L$), transverse ($V_T$), and Rayleigh ($V_R$) velocities from 1139 ms$^{-1}$ to 285 ms$^{-1}$, from 87 ms$^{-1}$ to 143 ms$^{-1}$, and from 562 ms$^{-1}$ to 136 ms$^{-1}$, respectively, for porosity from 60% to 75%.

Key words: Ti–6Al–4V alloy, Rayleigh velocities, scanning acoustic microscopy (SAM), Young’s modulus, surface acoustic waves (SAW) simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0411.html

DOI: https://doi.org/10.15407/mfint.40.03.0411

PACS: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv

Citation: Y. Al-Sayad, Z. Hadjoub, and A. Doghmane, Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications, Metallofiz. Noveishie Tekhnol., 40, No. 3: 411—421 (2018)


REFERENCES
  1. M. Peters, H. Hemptenmacher, J. Kumpfert, and C. Leyens, Titanium and Titanium Alloys (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH: 2003).
  2. G. Kotan and A. S¸akir Bor, Turkish J. Eng. Env. Sci., 31: 149 (2007).
  3. Sh. R. Bhattarai, Kh. A.-R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and H. Y. Kim, J. Biomedical Materials Research Part A, 86A, Iss. 2: 289 (2008). Crossref
  4. A. Briggs, Acoustic Microscopy (Oxford: Clarendon Press: 1992).
  5. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic (Boca Raton: CRC Press: 2002). Crossref
  6. I. A. Viktorov, Rayleigh and Love Waves. Section 1.1 (New York: Plenum: 1967). Crossref
  7. J. E. May, IEEE Spectrum, 2: 73 (1965). Crossref
  8. R. M. White and F. W. Voltmer, Appl. Phys. Lett., 7: 314 (1965). Crossref
  9. C.-C. Tseng, J. Appl. Phys., 38: 4281 (1967). Crossref
  10. C.-C. Tseng, J. Appl. Phys., 41: 2270 (1970). Crossref
  11. R. M. White, IEEE Trans. Elect. Dev., ED14: 181 (1967). Crossref
  12. H. F. Tiersten, J. Appl. Phys., 40: 770 (1969). Crossref
  13. D. L. White, IEEE Ultrasonics Symp. (Vancouver: 1967).
  14. E. Stern, Lincoln Lab. Tech., Note No. 1968-36, M.I.T. (1968).
  15. J. B. Liu, J. N. Peterson, F. Forsberg, M. D. Jaeger, D. B. Kynor, and R. J. Kline-Schoder, Ultrasonics, 42: 337 (2004). Crossref
  16. S. Bouhedja, I. Hadjoub, A. Doghmane, and Z. Hadjoub, phys. status solidi (a), 202: 1025 (2005). Crossref
  17. K. Wang, Mat. Sci. Eng. A, 213: 134 (1996). Crossref
  18. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38: 858 (1981). Crossref
  19. J. Kushibiki and N. Chubachi, IEEE Sonics Ultrason., SU-32, No. 2, 189 (1985). Crossref
  20. R. G. Munro and J. Res, Nat. Inst. Stand. Technol., 105: 709 (2000). Crossref