Loading [MathJax]/jax/output/HTML-CSS/jax.js

Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications

Y. Al-Sayad, Z. Hadjoub, A. Doghmane

Badji Mokhtar University, BO 12, CP 23000 Annaba, Algeria

Received: 24.11.2017. Download: PDF

Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal V. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms1 to 285 ms1, from 87 ms1 to 143 ms1, and from 562 ms1 to 136 ms1, respectively, for porosity from 60% to 75%.

Key words: Ti–6Al–4V alloy, Rayleigh velocities, scanning acoustic microscopy (SAM), Young’s modulus, surface acoustic waves (SAW) simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0411.html

DOI: https://doi.org/10.15407/mfint.40.03.0411

PACS: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv

Citation: Y. Al-Sayad, Z. Hadjoub, and A. Doghmane, Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications, Metallofiz. Noveishie Tekhnol., 40, No. 3: 411—421 (2018)


REFERENCES
  1. M. Peters, H. Hemptenmacher, J. Kumpfert, and C. Leyens, Titanium and Titanium Alloys (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH: 2003).
  2. G. Kotan and A. S¸akir Bor, Turkish J. Eng. Env. Sci., 31: 149 (2007).
  3. Sh. R. Bhattarai, Kh. A.-R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and H. Y. Kim, J. Biomedical Materials Research Part A, 86A, Iss. 2: 289 (2008). Crossref
  4. A. Briggs, Acoustic Microscopy (Oxford: Clarendon Press: 1992).
  5. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic (Boca Raton: CRC Press: 2002). Crossref
  6. I. A. Viktorov, Rayleigh and Love Waves. Section 1.1 (New York: Plenum: 1967). Crossref
  7. J. E. May, IEEE Spectrum, 2: 73 (1965). Crossref
  8. R. M. White and F. W. Voltmer, Appl. Phys. Lett., 7: 314 (1965). Crossref
  9. C.-C. Tseng, J. Appl. Phys., 38: 4281 (1967). Crossref
  10. C.-C. Tseng, J. Appl. Phys., 41: 2270 (1970). Crossref
  11. R. M. White, IEEE Trans. Elect. Dev., ED14: 181 (1967). Crossref
  12. H. F. Tiersten, J. Appl. Phys., 40: 770 (1969). Crossref
  13. D. L. White, IEEE Ultrasonics Symp. (Vancouver: 1967).
  14. E. Stern, Lincoln Lab. Tech., Note No. 1968-36, M.I.T. (1968).
  15. J. B. Liu, J. N. Peterson, F. Forsberg, M. D. Jaeger, D. B. Kynor, and R. J. Kline-Schoder, Ultrasonics, 42: 337 (2004). Crossref
  16. S. Bouhedja, I. Hadjoub, A. Doghmane, and Z. Hadjoub, phys. status solidi (a), 202: 1025 (2005). Crossref
  17. K. Wang, Mat. Sci. Eng. A, 213: 134 (1996). Crossref
  18. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38: 858 (1981). Crossref
  19. J. Kushibiki and N. Chubachi, IEEE Sonics Ultrason., SU-32, No. 2, 189 (1985). Crossref
  20. R. G. Munro and J. Res, Nat. Inst. Stand. Technol., 105: 709 (2000). Crossref