Preparation of Co–Gr Nanocomposites and Analysis of Their Tribological and Corrosion Characteristics

G. R. Raghav$^{1}$, A. N. Balaji$^{1}$, D. Muthukrishnan$^{1}$, V. Sruthi$^{2}$

$^{1}$K.L.N. College of Engineering, 630612 Pottapalayam, Sivagangai District, Tamil Nadu, India
$^{2}$SCMS School of Engineering and Technology, Vidya Nagar, Palissery, Karukutty, Ernakulam, 683582 Kerala, India

Received: 02.04.2018. Download: PDF

This work summarizes the tribological and corrosion behaviour of Co–Gr nanocomposites. The Co–Gr nanocomposites are synthesized using high-energy ball mill and compacted into cylindrical pellets by hydraulic pressing. The composites are characterized using SEM, EDAX, and AFM. The dry sliding wear results reveal that the wear resistance increases with increase in the percentage of graphite (Gr). The corrosion characteristics of the Co–Gr nanocomposites are examined using immersion and electrochemical methods. The electrochemical polarization results reveal the increase in corrosion resistant of the Co–25Gr nanocomposites ($E_{\textrm{corr}}$ = -0.416 V $vs$ Ag/AgCl) to more positive side than pure Co (-0.443 V). Electrochemical impedance spectroscopy analysis results also confirmed Co–25Gr nanocomposite has higher resistance value (100 $\Omega$). The results of the weight loss method also authenticate increase in corrosion resistance of Co–25Gr nanocomposite.

Key words: wear, corrosion, EDAX, SEM, AFM.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i07/0979.html

DOI: https://doi.org/10.15407/mfint.40.07.0979

PACS: 62.20.Qp, 68.37.Hk, 68.37.Ps, 81.05.uf, 81.40.Pq, 81.65.Kn, 82.45.Bb

Citation: G. R. Raghav, A. N. Balaji, D. Muthukrishnan, and V. Sruthi, Preparation of Co–Gr Nanocomposites and Analysis of Their Tribological and Corrosion Characteristics, Metallofiz. Noveishie Tekhnol., 40, No. 7: 979—992 (2018)


REFERENCES
  1. L. M. Vilhena, C. M. Fernandes, E. Soares, J. Sacramento, A. M. R. Senos, and A. Ramalho, Wear, 346–347: 99 (2016). Crossref
  2. Y. Liu, J. Cheng, B. Yin, S. Zhu, Z. Qiao, and J. Yang, Tribol. Int., 109: 19 (2016). Crossref
  3. F. Ren, W. Zhu, and K. Chu, J. Mech. Behav. Biomed. Mater., 68: 115 (2017). Crossref
  4. R. Mousavi, M. E. Bahrololoom, and F. Deflorian, Mater. Design, 110: 456 (2016). Crossref
  5. R. Liu, J. Yao, Q. Zhang, M. X. Yao, and R. Collier, Mater. Design, 78: 95 (2015). Crossref
  6. C. Jiang, Y. Xing, F. Zhang, and J. Hao, Int. J. Miner. Metall. Mater., 19, Iss. 7: 657 (2012). Crossref
  7. M. M. H. Bastwros, A. M. K. Esawi, and A. Wifi, Wear, 307, Iss. 1–2: 164 (2013). Crossref
  8. K. S. Prakash, P. Balasundar, S. Nagaraja, P. M. Gopal and V. Kavimani, J. Magnesium Alloys, 4, Iss. 3: 197 (2016). Crossref
  9. P. Wang, H. Zhang, J. Yin, X. Xiong, C. Tan, C. Deng and Z. Yan, Wear, 380–381: 59 (2017). Crossref
  10. T. R. Prabhu, V. K. Varma, and S. Vedantam, Wear, 309, Iss. 1–2: 247 (2014). Crossref
  11. C. Parswajinan, B.V. Ramnath, C. Elanchezhian, S. V. Pragadeesh, P. R. Ramkishore, and V. Sabarish, Procedia. Eng., 97: 513 (2014). Crossref
  12. Mohammad Sharear kabir, Tamzid lbn Minhaj, Md Delower Hossain, and ASW Kurny, Am. J. Mater. Eng. Technol., 3, Iss. 1: 7 (2015). Crossref
  13. C. Y. H. Lim, D. K. Leo, J. J. S. Ang, and M. Gupta, Wear, 259, Iss. 1–6: 620 (2005). Crossref
  14. F. Toptan, A. C. Alves, I. Kerti, E. Ariza, and L. A. Rocha, Wear, 306, Iss. 1–2: 27 (2013). Crossref
  15. N. Elkhoshkhany, A. Hafnway, and A. Khaled, J. Alloys Compd., 695: 1505 (2017). Crossref
  16. F. A. P. Fernandes, J. Gallego, C. A. Picon, G. T. Filho, and L. C. Casteletti, Surf. Coat. Technol., 279: 112 (2015). Crossref
  17. J. H. Qiu and P. H. Chua, Surf. Interface Anal., 28: 119 (1999). Crossref
  18. T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, Surf. Coat. Technol., 200, Iss. 11: 3438 (2006). Crossref
  19. Q. Xu, K. Gao, Y. Wang, and X. Pang, Appl. Surf. Sci., 345: 10 (2015). Crossref