Mechanical Properties, Phase and Chemical Compositions of a Surface of the Ti–6Al–4V Alloy After Ultrasonic Impact Treatment in Chemically Active and Neutral Mediums

M. O. Vasylyev$^{1}$, B. M. Mordyuk$^{1}$, G. I. Prokopenko$^{1}$, S. М. Voloshko$^{2}$, L. F. Yatsenko$^{3}$, N. I. Khripta$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$Branch of PJSC ‘Ukrzaliznytsia’ ‘Research, Engineering and Design Institute of Railway Transport’, 39 I. Fedorova Str., 03038 Kyiv, Ukraine

Received: 15.01.2018. Download: PDF

Ultrasonic impact treatment (UIT) of titanium Ti–6Al–4V alloy is carried out in inert (argon) and chemically active environments—in the air at room temperature and in liquid nitrogen at cryogenic temperatures. As shown, severe plastic deformation of the surface at the UIT facilitates the formation of nanostructure (with the size of structural elements of $\alpha$- and $\beta$-phases of 35–53 nm and 27–37 nm, respectively). It also results in mechanochemical reactions as the oxidation of surface layers of the Ti–6Al–4V alloy in the air at room temperature and their nitridation in liquid nitrogen. As established by energy dissipation analysis and X-ray diffractometry, the intense saturation of the surface layer with oxygen (up to 60 at.%) results in the formation of TiO$_2$ (rutile) and the saturation with nitrogen (up to 25–65 at.%) leads to the formation of the titanium TiN and Ti$_2$N nitrides. The maximum of hardening effect (the increase of microhardness by $\cong$3 times) and the increase in durability (by $\cong$2 times) of the surface of the Ti–6Al–4V alloy are observed in the liquid-nitrogen environment after optimal UIT regime (A = 25 $\mu$m, $\tau$ = 120 s). Possible mechanisms of oxidation and nitridation of the surface layers at severe deformation are discussed. As shown, the application of deformation methods for modifying the surface of titanium alloys is a promising direction for increasing their durability, in particular, wear resistance.

Key words: cryogen severe plastic deformation, ultrasound impact treatment (UIT), nanostructure, mechanochemical reactions, oxidation, nitridation, hardening, wear.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i08/1029.html

DOI: https://doi.org/10.15407/mfint.40.08.1029

PACS: 43.35.+d, 62.20.Qp, 68.37.Hk, 68.55.J-, 68.55.Nq, 81.40.Ef, 81.40.Pq, 81.65.-b

Citation: M. O. Vasylyev, B. M. Mordyuk, G. I. Prokopenko, S. М. Voloshko, L. F. Yatsenko, and N. I. Khripta, Mechanical Properties, Phase and Chemical Compositions of a Surface of the Ti–6Al–4V Alloy After Ultrasonic Impact Treatment in Chemically Active and Neutral Mediums, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029—1049 (2018) (in Ukrainian)


REFERENCES
  1. A. D. Pogrebnjak, A. A. Bagdasaryan, A. V. Pshyk, and K. Dyadyura, Uspekhi Fizicheskikh Nauk, 187, No. 12: 515 (2017) (in Russian). Crossref
  2. N. S. Mashovets, I. M. Pastukh, and S. M. Voloshko, Appl. Surf. Sci., 392: 356 (2017). Crossref
  3. J J. F. Gomes, R. M. Miranda, T. J. Santos, and P. A. Carvalho, J. Toxicol. Environ. Health. Part A, 77, Nos. 14–16: 924 (2014). Crossref
  4. X. Yang, X. Wang, X. Ling, and D. Wang, Results in Physics, 7: 1412 (2017). Crossref
  5. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref
  6. G. I. Prokopenko, B. M. Mordyuk, M. O. Vasylyev, and S. M. Voloshko, Fizychni Osnovy Ultrazvukovogo Udarnogo Zmitsnennya Metalevykh Poverkhon [Physical Principles for Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  7. V. I. Prykhod'ko, M. V. Vysokolyan, V. V. Volochay, G. I. Prokopenko, B. M. Mordyuk, V. T. Cherepin, T. A. Krasovs'kyy, and T. V. Popova, Nauka Innov., 10, No. 1: 5 (2014) (in Ukrainian). Crossref
  8. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley-VCH: 2015), p. 417. Crossref
  9. X. An, C. A. Rodopoulos, E. S. Statnikov, V. N. Vitazev, and O. V. Korolkov, J. Mater. Eng. Perform., 15: 355 (2006). Crossref
  10. C. A. Rodopoulos, S. G. Pantelakis, and M. P. Papadopoulos, J. Mater. Eng. Perf., 18: 1248 (2009). Crossref
  11. G. I. Prokopenko and B. N. Mordyuk, Svarka i Konstruktsii, No. 1: 10 (2015) (in Russian).
  12. M. O. Vasiliev, S. M. Voloshko, and L. F. Yatsenko, Uspehi Fiziki Metallov, 15, No. 2: 79 (2014) (in Russian). Crossref
  13. K. Takahashi and E. Sato, Mater. Trans., 51 (4): 694 (2010). Crossref
  14. V. Mehta, D. Amin, and Sh. Rajpurohit, IJIRST, 2: 12 (2016).
  15. E. E. Boklag, I. V. Kolodiy, M. A. Tikhonovsky, I. F. Kislyak, P. A. Khaimovich, and A. A. Efimov, Voprosy Atomnoy Nauki i Tekhniki, 2: 95 (2015).
  16. L. A. Chirkina, M. B. Lazareva, V. Y. Sokolenko, V. V. Kalinovskiy, P. A. Khaimovich, and V. S. Okovit, Voprosy Atomnoy Nauki i Tekhniky, No. 1: 115 (2014) (in Russian).
  17. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269 (2015) (in Ukrainian). Crossref
  18. M. A.Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Coat. Technol., 343: 57 (2018). Crossref
  19. M. O. Vasiliev, G. I. Prokopenko, and V. S. Filatova, Uspehi Fiziki Metallov, 5, No. 3: 345 (2004) (in Russian). Crossref
  20. L. V. Tikhonov, V. L. Svechnikov, G. I. Prokopenko, R. G. Gontareva, and L. V. Tarasenko, Metallofizika 7, No. 5: 48 (1985) (in Russian).
  21. N. N. Popov, A. I. Korshunov, A. A. Aushev, M. Yu. Sidorkin, T. I. Sysoeva, I. V. Kostylev, A. E. Gusarov, and V. V. Stolyarov, Phys. Metals Metallogr., 102, No. 4: 432 (2006). Crossref
  22. A. Amanov, I.-S. Cho, D.-E. Kim, and Y.-S. Pyun, Surf. Coat. Technol., 207: 135 (2012), DOI:10.1016/j.surfcoat.2012.06.046. Crossref
  23. V. M. Mironov, Perspektivnye Materialy, No. 5: 84 (2003) (in Russian).
  24. D. S. Gertsriken, V. F. Mazanko, Yu. N. Koval, Yu. Ya. Meshkov, V. M. Mironov, V. V. Alekseeva, and T. V. Mironova, Visnyk ChNU, No. 117: 40 (2007).
  25. V. F. Mazanko, D. S. Gertsriken, V. M. Mironov, D. V. Mironov, and S. A. Bobyr, Iskrovoy Razryad i Diffuzionnye Protsessy v Metallakh [Spark Discharge and Diffusion Processes in Metals] (Kiev: Naukova Dumka: 2014), p. 191 (in Russian).