Features of Formation of Structure and Phase Composition During a Reactive Sintering of Cubic Boron Nitride with Compounds of Ti, Cr, V

K. V. Slipchenko$^{1}$, I. A. Petrusha$^{1}$, V. Z. Turkevich$^{1}$, V. M. Bushlya$^{2}$, J.-E. Stahl$^{2}$

$^{1}$V.M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavods’ka Str., UA-04074 Kyiv, Ukraine
$^{2}$Lund University, Box 117, SE-22100 Lund, Sweden

Received: 18.04.2018. Download: PDF

Influence of sintering temperature on both phase composition and structure of ceramic matrix composites based on cubic boron nitride with binders in a form of Al and the Ti, Cr, V carbides are investigated by methods of physical materials science. As the object of study, three $c$BN–TiC–Al, $c$BN–Cr$_3$C$_2$–Al, $c$BN–VC–Al compositions containing 60% vol. $c$BN are selected. The composites are obtained by high-pressure high-temperature (HPHT) sintering in high-pressure apparatus AVTT-30 in the temperature range of 1600–2450°C under pressure of 7.7 GPa. In the process of HPHT sintering of composites in the $c$BN–TiC–Al and $c$BN–Cr$_3$C$_2$–Al systems, the formation of titanium and chromium diborides is found at the temperatures of sintering $Т_{\textrm{sint}} \geq$ 1850°C and $Т_{\textrm{sint}} \geq$ 2150°C, respectively, simultaneously with the formation of aluminium nitride.

Key words: boron nitride, carbides, ceramic matrix composites, sintering, high pressure.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i08/1081.html

DOI: https://doi.org/10.15407/mfint.40.08.1081

PACS: 61.05.cp, 61.72.Ff, 62.50.-p, 68.37.Hk, 81.05.Ni, 81.20.Ev, 81.40.Vw

Citation: K. V. Slipchenko, I. A. Petrusha, V. Z. Turkevich, V. M. Bushlya, and J.-E. Stahl, Features of Formation of Structure and Phase Composition During a Reactive Sintering of Cubic Boron Nitride with Compounds of Ti, Cr, V, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1081—1091 (2018) (in Ukrainian)


REFERENCES
  1. Indexable Inserts for Cutting Tools–Designation, ISO 1832: 2017.
  2. J. P. Costes, Y. Guillet, G. Poulachon, and M. Dessoly, Int. J. Mach. Tools Manuf., 47, Iss. 7–8: 1081 (2007). Crossref
  3. E. Benko, T. L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik, and J. Morgiel, Ceram. Int., 27, Iss. 6: 637 (2001). Crossref
  4. E. Benko, J. S. Stanislaw, B. Królicka, A. Wyczesany, and T. L. Barr, Diam. Relat. Mater., 8, Iss. 10: 1838 (1999). Crossref
  5. Sh.-Yu. Chiou, Sh.-F. Ou, Yu-G. Jang, and K.-L. Ou, Ceram. Int., 39, Iss. 6: 7205 (2013). Crossref
  6. X. Z. Rong, T. Tsurumi, O. Fukunaga, and T. Yano, Diamond Relat. Mater., 11, Iss. 2: 280 (2002). Crossref
  7. E. Benko, A. Wyczesany, and T. L. Barr, Ceram. Int., 26, Iss. 6: 639 (2000). Crossref
  8. M. P. Bezhenar, Sverkhtvyordye Materialy, No. 2: 4 (1999) (in Russian).
  9. Sverkhtvyordye Materialy. Poluchenie i Primenenie (Ed. A. A. Shulzhenko) (Kiev: ISM im. V. N. Bakulya NANU: 2003), vol. 1 (in Russian).
  10. Ya. M. Romanenko and M. P. Bezhenar, Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument—Tekhnika i Tekhnologiya Ego Izgotovleniya i Primeneniya (Kiev: 2014), Iss. 17, p. 276 (in Russian).
  11. M. P. Bezhenar, S. M. Konoval, Ya. M. Romanenko, V. M. Tkach, N. M. Bilyavina, Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument—Tekhnika i Tekhnologiya Ego Izgotovleniya i Primeneniya (Kiev: 2015), Iss. 18, p. 328 (in Russian).
  12. L. Zhang, F. Lin, Zh. Lv, Ch. Xu, X. He, W. Wang, L. Li, Ch. Zhang, Ch. Chen, and L. Xia, Int. J. Refract. Met. Hard Mater., 50: 221 (2015). Crossref
  13. E. Benko, A. Wyczesany, A. Bernasik, T. L. Barr, and E. Hoppe, Ceram. Int., 26, Iss. 5: 545 (2000). Crossref