A Study of Temperature Effect on the Rayleigh Velocity of Superconductor Material Type Bi2212 Using Acoustic Techniques

N. Sayoud, S. Chouf, A. Boudour

Badji Mokhtar University, B.P. 12, CP 23000 Annaba, Algeria

Received: 28.12.2017. Download: PDF

In the present work, the effect of the temperature on Rayleigh velocity $V_R$ of superconductor material type Bi2212 is studied, focusing on the modelling of both the reflection coefficient $R$($\theta$) and the acoustic signature $V$($z$). Consequently, the study allows us to deduct the velocities of the acoustic waves of surface and volume, following their evolution as functions of temperature. The study is carried out in case of porous and non-porous superconductor material type Bi2212 in a temperature range from 10 to 295 K and with work frequency of 600 MHz. This modelling study is based on experimental results obtained on porous and non-porous Bi2212 superconducting materials in the temperature range of 10 to 295 K at a frequency of 600 MHz.

Key words: Rayleigh velocity, reflection coefficient, acoustic signature, superconductor type Bi2212, porosity.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i09/1173.html

DOI: https://doi.org/10.15407/mfint.40.09.1173

PACS: 06.60.Mr, 62.20.de, 62.30.+d, 62.65.+k, 74.25.Ld, 74.72.Hs, 81.70.Cv

Citation: N. Sayoud, S. Chouf, and A. Boudour, A Study of Temperature Effect on the Rayleigh Velocity of Superconductor Material Type Bi2212 Using Acoustic Techniques, Metallofiz. Noveishie Tekhnol., 40, No. 9: 1173—1184 (2018)

  1. Z. Yu and S. Boseck, Rev. Mod. Phys., 67, Iss. 4: 863 (1995). Crossref
  2. S. Debboub, Y. Boumaïza, A. Boudour, and T. Tahraoui, Chin. Phys. Lett., 29, No. 4: 044301 (2012). Crossref
  3. C. F. Quate, A. Atalar, and H. K. Wickramasinghe, Proc. IEEE, 67, Iss. 8: 1092 (1979). Crossref
  4. R. A. Lemons and C. F. Quate, Proc. IEEE Ultrasonics Symp. (Sept. 26–28, 1979, New Orleans, LA, USA), p. 18.
  5. N. A. Rasih and A. K. Yahya, J. Alloys Compd., 480, Iss. 2: 777 (2009). Crossref
  6. W. Abdeen, A. El. Tahan, R. Awad, A. I. Abou Aly, E. M. El-Maghraby, and A. Khalaf, Appl. Phys. A, 122, Iss. 6: 574 (2016). Crossref
  7. M. B. Solunke, K. B. Modi, V. K. Lakhani, K. B. Zankat, P. U. Sharma, P. V. Reddy, and S. S. Shah, Ind. J. Pure Appl. Phys., 45, No. 9: 764 (2007).
  8. T. Tahraoui, Y. Boumaïza, and B. Boudour, Optoelectron. Adv. Mater., 4, No. 11: 1771 (2010).
  9. R. Ravinder Reddy and P. Venugopal Reddy, Physica C, 265, Iss. 1–2: 96 (1996). Crossref
  10. S. Ismail, A.-B. M. A. Ibrahim, and A. K. Yahya, Phase Transitions, 88, Iss. 7: 692 (2015). Crossref
  11. L. M. Brekhovskikh, and O. A. Godin, Acoustic of Layered Media I: Plane and Quasi-Plane Waves (Berlin: Springer-Verlag: 1990). Crossref
  12. G. A. D. Briggs, Acoustic Microscopy (Oxford: Oxford University: 2010).
  13. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (Montreal: Concordia University Montreal: 2002). Crossref
  14. C. J. R. Sheppard and T. Wilson, J. Appl. Phys. Lett., 38, Iss. 11: 858 (1981). Crossref
  15. Chang Fanggao, M. Cankurtaran, G. A. Sauders, D. P. Almond, P. J. Ford, and A. Al-Kheffaji, Supercond. Sci. Technol., 3, No. 11: 546 (1990). Crossref