Loading [MathJax]/jax/output/HTML-CSS/jax.js

Enhancement of Heat Resistance of Ti6Al4V Titanium Alloy by Formation of Oxide Composite Layers Using Ultrasonic Impact Treatment

V. V. Mohylko1, A. P. Burmak1, M. M. Voron2, I. A. Vladymyrskyi1, S. I. Sidorenko1, S. M. Voloshko1, B. M. Mordyuk3

1National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
2Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
3G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.06.2018. Download: PDF

A modification of the surface layer of a Ti6Al4V titanium alloy is carried out using ultrasonic impact treatment (UIT) with addition of the Al2O3 and Cr2O3 powders to the deformation zone. As shown by means of x-ray diffraction phase analysis, optical and scanning electron microscopies, the surface layers of composite are formed during the UIT induced severe plastic deformation. The microhardness of the composite layers is 2 times higher than that of the matrix alloy. The high-temperature oxidation of composite layers containing Cr2O3 particles and the Cr2O3 + Al2O3 mixture leads to strengthening the underlying layers due to the formation of a solid solution of oxygen in the α-phase, which is not observed in the case of a layer/coating formed with addition of Al2O3. According to the gravimetric analysis of samples during the cyclic high-temperature oxidation in air (20 cycles for 5 hours at a temperature of 550°C), it is concluded that the composite layer/coating saturated with Al2O3 particles have the highest heat resistance. This is due to the close values of the thermal expansion coefficients of Al2O3 coating and Ti6Al4V alloy, as opposed to the behaviour of the rough alloy and other composite layers, which are destroyed during the cyclic heating–cooling process.

Key words: ultrasonic impact treatment (UIT), composite layers, oxide powders, coating, microhardness, heat resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i11/1521.html

DOI: https://doi.org/10.15407/mfint.40.11.1521

PACS: 61.43.Gt, 61.72.Ff, 62.20.Qp, 65.40.De, 68.60.Dv, 81.05.Mh, 81.65.Mq

Citation: V. V. Mohylko, A. P. Burmak, M. M. Voron, I. A. Vladymyrskyi, S. I. Sidorenko, S. M. Voloshko, and B. M. Mordyuk, Enhancement of Heat Resistance of Ti6Al4V Titanium Alloy by Formation of Oxide Composite Layers Using Ultrasonic Impact Treatment, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1521—1537 (2018) (in Ukrainian)


REFERENCES
  1. A. A. Il'in, B. A. Kolachev, and I. S. Pol'kin, Titanovye Splavy: Sostav, Struktura, Svoystva [Titanium Alloys: Composition, Structure, Properties] (Moscow: VILS-MATI: 2009) (in Russian).
  2. N. S. Mashovets, I. M. Pastukh, and S. M. Voloshko, Appl. Surf. Sci., 392: 356 (2017). Crossref
  3. I. Ya. Smokovych, I. S. Pohrebova, T. V. Loskutova, and V. H. Khyzhnyak, Naukovi Visti NTUU 'KPI', No. 1: 84 (2013) (in Ukrainian).
  4. I. Gurrappa and A. K. Gogia, Mater. Sci. Technol., 17: 581 (2001). Crossref
  5. J. Unnam, R. N. Shenoy, and R. K. Clark, Oxidation of Metals, 26: 249 (1986). Crossref
  6. G. I. Prokopenko, B. M. Mordyuk, M. O. Vasyliev, and S. M. Voloshko, Fizychni Osnovy Ul'trazvukovogo Udarnogo Zmitsnennya Metalevykh Poverkhon' [Physical Principles of Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  7. D. S. Gertsriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Fal'chenko, Massoperenos v Metallakh pri Nizkikh Temperaturakh v Usloviyakh Vneshnikh Vozdeystviy [Masstransfer in Metals at Low Temperatures at External Loads] (Kyiv: RIO IMF: 1999) (in Russian).
  8. B. N. Mordyuk, V. V. Silbershmidt, G. I. Prokopenko, M. O. Iefimov, and Yu. V. Nesterenko, Mater. Characterization, 61: 1126 (2010). Crossref
  9. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, and M. V. Kindrachuk, Metallofiz. Noveishie Tekhnol., 38, No. 4: 545 (2016) (in Ukrainian). Crossref
  10. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  11. B. N. Mordyuk, Yu. V. Milman, M. O. Iefimov, and K. E. Grinkevych, J. Manufact. Technol. Res., 9, Nos. 3–4: 121 (2017).
  12. M. O. Vasylyev, B. M. Mordyuk, D. V. Pavlenko, and L. F. Yatsenko, Metallofiz. Noveishie Tekhnol., 37, No. 1: 121 (2015) (in Russian). Crossref
  13. M. O. Vasylyev, V. O. Tinkov, S. M. Voloshko, V. S. Filatova, and L. F. Iatsenko, Metallofiz. Noveishie Tekhnol., 34, No. 5: 687 (2012) (in Russian).
  14. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  15. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  16. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref
  17. H. Özkan Gülsoy, S. Özbey, S. Pazarlioglu, M. Çiftci, and H. Akyurt, Int. J. Mater. Mech. Manufact., 4, No. 2: 111 (2016). Crossref
  18. S. Chabri, S. Chatterjee, S. Pattanayak, H. Chakraborty, N. Bhowmik, and A. Sinha, J. Mater. Sci. Technol., 29, Iss. 11: 1085 (2013). Crossref
  19. K. Yang, X. Zhou, H. Zhao, and S. Tao, Surf. Coat. Technol., 206: 1362 (2011). Crossref
  20. X. Li, C. Dong, Q. Zhao, Y. Pang, F. Cheng, and S. Wang, J. Mater. Eng. Perform., 27: 1642 (2018). Crossref
  21. F. Pitt and M. Ramulu, J. Mater. Eng. Perform., 13: 727 (2004). Crossref
  22. D. Poquillon, C. Armand, and J. Huez, Oxidation of Metals, 79: 249 (2013). Crossref
  23. S. Zeng, A. Zhao, H. Jiang, X. Fan, X. Duan, and X. Yan, Oxidation of Metals, 81: 467 (2014). Crossref
  24. L. V. Tikhonov, V. A. Kononenko, G. I. Prokopenko, and V. A. Rafalovskiy, Mekhanicheskie Svoystva Metallov i Splavov [Mechanical Properties of Metals and Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  25. G. V. Samsonov, A. L. Borisova, T. G. Zhidkova, T. N. Znatokova, Yu. P. Kaloshina, A. F. Kiseleva, P. S. Kislyy, M. S. Koval'chenko, T. Ya. Kosolapova, Ya. S. Malakhov, A. D. Panasyuk, V. I. Slavuta, and N. I. Tkachenko, Fiziko-Khimicheskie Svoystva Okislov [Physical-Chemical Properties of Oxides] (Moscow: Metallurgiya: 1978) (in Russian).
  26. S. P. Chenakin, V. S. Filatova, I. N. Makeeva, and M. A. Vasylyev, Appl. Surf. Sci., 408: 11 (2017). Crossref
  27. N. I. Khripta, O. P. Karasevska, and B. N. Mordyuk, J. Mater. Eng. Perform., 26: 5446 (2017). Crossref
  28. G. S. Firstov, R. G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Biomater., 23: 4863 (2002). Crossref
  29. H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnel-Gray, Corrosion Sci., 63: 631 (1994). Crossref
  30. S.-A. Cho, F. J. Arenas, and J. Ochoa, Ceramics Int., 16: 301 (1990). Crossref