Enhancement of Heat Resistance of Ti6Al4V Titanium Alloy by Formation of Oxide Composite Layers Using Ultrasonic Impact Treatment

V. V. Mohylko$^{1}$, A. P. Burmak$^{1}$, M. M. Voron$^{2}$, I. A. Vladymyrskyi$^{1}$, S. I. Sidorenko$^{1}$, S. M. Voloshko$^{1}$, B. M. Mordyuk$^{3}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.06.2018. Download: PDF

A modification of the surface layer of a Ti6Al4V titanium alloy is carried out using ultrasonic impact treatment (UIT) with addition of the Al$_2$O$_3$ and Cr$_2$O$_3$ powders to the deformation zone. As shown by means of x-ray diffraction phase analysis, optical and scanning electron microscopies, the surface layers of composite are formed during the UIT induced severe plastic deformation. The microhardness of the composite layers is 2 times higher than that of the matrix alloy. The high-temperature oxidation of composite layers containing Cr$_2$O$_3$ particles and the Cr$_2$O$_3$ + Al$_2$O$_3$ mixture leads to strengthening the underlying layers due to the formation of a solid solution of oxygen in the $\alpha$-phase, which is not observed in the case of a layer/coating formed with addition of Al$_2$O$_3$. According to the gravimetric analysis of samples during the cyclic high-temperature oxidation in air (20 cycles for 5 hours at a temperature of 550°C), it is concluded that the composite layer/coating saturated with Al$_2$O$_3$ particles have the highest heat resistance. This is due to the close values of the thermal expansion coefficients of Al$_2$O$_3$ coating and Ti6Al4V alloy, as opposed to the behaviour of the rough alloy and other composite layers, which are destroyed during the cyclic heating–cooling process.

Key words: ultrasonic impact treatment (UIT), composite layers, oxide powders, coating, microhardness, heat resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i11/1521.html

DOI: https://doi.org/10.15407/mfint.40.11.1521

PACS: 61.43.Gt, 61.72.Ff, 62.20.Qp, 65.40.De, 68.60.Dv, 81.05.Mh, 81.65.Mq

Citation: V. V. Mohylko, A. P. Burmak, M. M. Voron, I. A. Vladymyrskyi, S. I. Sidorenko, S. M. Voloshko, and B. M. Mordyuk, Enhancement of Heat Resistance of Ti6Al4V Titanium Alloy by Formation of Oxide Composite Layers Using Ultrasonic Impact Treatment, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1521—1537 (2018) (in Ukrainian)


REFERENCES
  1. A. A. Il'in, B. A. Kolachev, and I. S. Pol'kin, Titanovye Splavy: Sostav, Struktura, Svoystva [Titanium Alloys: Composition, Structure, Properties] (Moscow: VILS-MATI: 2009) (in Russian).
  2. N. S. Mashovets, I. M. Pastukh, and S. M. Voloshko, Appl. Surf. Sci., 392: 356 (2017). Crossref
  3. I. Ya. Smokovych, I. S. Pohrebova, T. V. Loskutova, and V. H. Khyzhnyak, Naukovi Visti NTUU 'KPI', No. 1: 84 (2013) (in Ukrainian).
  4. I. Gurrappa and A. K. Gogia, Mater. Sci. Technol., 17: 581 (2001). Crossref
  5. J. Unnam, R. N. Shenoy, and R. K. Clark, Oxidation of Metals, 26: 249 (1986). Crossref
  6. G. I. Prokopenko, B. M. Mordyuk, M. O. Vasyliev, and S. M. Voloshko, Fizychni Osnovy Ul'trazvukovogo Udarnogo Zmitsnennya Metalevykh Poverkhon' [Physical Principles of Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  7. D. S. Gertsriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Fal'chenko, Massoperenos v Metallakh pri Nizkikh Temperaturakh v Usloviyakh Vneshnikh Vozdeystviy [Masstransfer in Metals at Low Temperatures at External Loads] (Kyiv: RIO IMF: 1999) (in Russian).
  8. B. N. Mordyuk, V. V. Silbershmidt, G. I. Prokopenko, M. O. Iefimov, and Yu. V. Nesterenko, Mater. Characterization, 61: 1126 (2010). Crossref
  9. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, and M. V. Kindrachuk, Metallofiz. Noveishie Tekhnol., 38, No. 4: 545 (2016) (in Ukrainian). Crossref
  10. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  11. B. N. Mordyuk, Yu. V. Milman, M. O. Iefimov, and K. E. Grinkevych, J. Manufact. Technol. Res., 9, Nos. 3–4: 121 (2017).
  12. M. O. Vasylyev, B. M. Mordyuk, D. V. Pavlenko, and L. F. Yatsenko, Metallofiz. Noveishie Tekhnol., 37, No. 1: 121 (2015) (in Russian). Crossref
  13. M. O. Vasylyev, V. O. Tinkov, S. M. Voloshko, V. S. Filatova, and L. F. Iatsenko, Metallofiz. Noveishie Tekhnol., 34, No. 5: 687 (2012) (in Russian).
  14. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  15. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  16. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref
  17. H. Özkan Gülsoy, S. Özbey, S. Pazarlioglu, M. Çiftci, and H. Akyurt, Int. J. Mater. Mech. Manufact., 4, No. 2: 111 (2016). Crossref
  18. S. Chabri, S. Chatterjee, S. Pattanayak, H. Chakraborty, N. Bhowmik, and A. Sinha, J. Mater. Sci. Technol., 29, Iss. 11: 1085 (2013). Crossref
  19. K. Yang, X. Zhou, H. Zhao, and S. Tao, Surf. Coat. Technol., 206: 1362 (2011). Crossref
  20. X. Li, C. Dong, Q. Zhao, Y. Pang, F. Cheng, and S. Wang, J. Mater. Eng. Perform., 27: 1642 (2018). Crossref
  21. F. Pitt and M. Ramulu, J. Mater. Eng. Perform., 13: 727 (2004). Crossref
  22. D. Poquillon, C. Armand, and J. Huez, Oxidation of Metals, 79: 249 (2013). Crossref
  23. S. Zeng, A. Zhao, H. Jiang, X. Fan, X. Duan, and X. Yan, Oxidation of Metals, 81: 467 (2014). Crossref
  24. L. V. Tikhonov, V. A. Kononenko, G. I. Prokopenko, and V. A. Rafalovskiy, Mekhanicheskie Svoystva Metallov i Splavov [Mechanical Properties of Metals and Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  25. G. V. Samsonov, A. L. Borisova, T. G. Zhidkova, T. N. Znatokova, Yu. P. Kaloshina, A. F. Kiseleva, P. S. Kislyy, M. S. Koval'chenko, T. Ya. Kosolapova, Ya. S. Malakhov, A. D. Panasyuk, V. I. Slavuta, and N. I. Tkachenko, Fiziko-Khimicheskie Svoystva Okislov [Physical-Chemical Properties of Oxides] (Moscow: Metallurgiya: 1978) (in Russian).
  26. S. P. Chenakin, V. S. Filatova, I. N. Makeeva, and M. A. Vasylyev, Appl. Surf. Sci., 408: 11 (2017). Crossref
  27. N. I. Khripta, O. P. Karasevska, and B. N. Mordyuk, J. Mater. Eng. Perform., 26: 5446 (2017). Crossref
  28. G. S. Firstov, R. G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Biomater., 23: 4863 (2002). Crossref
  29. H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnel-Gray, Corrosion Sci., 63: 631 (1994). Crossref
  30. S.-A. Cho, F. J. Arenas, and J. Ochoa, Ceramics Int., 16: 301 (1990). Crossref