The Estimation of Stability and Growth of F.C.C. Iron Nanocluster Containing the Impurity Atoms

N. V. Bondarenko, A. V. Nedolya

Zaporizhzhya National University, 66 Zhukovsky Str., UA-69600 Zaporizhzhya, Ukraine

Received: 12.01.2018. Download: PDF

The energy of the isolated iron nanocluster is calculated by molecular mechanics method using Lennard-Jones potential depending on the position of impurities, i.e., interstitial carbon atom and substitutional nickel atom. The cluster included a carbon atom drifted to the surface from an inner octahedral interstice along the ⟨011⟩ direction or through the tetrahedral interstice firstly in the ⟨1$\bar{1}$1⟩ direction and then in the ⟨111⟩ direction. One of the 14 iron atoms is replaced with a nickel atom in the position, which is changed during simulation. As determined, the positions of a nickel atom significantly affect the energy of the nanocluster. The calculation results in the case of f.c.c. nanocluster indicate that position of a carbon atom at the octahedral interstice is more energy-favourable than its position at the tetrahedral interstice. On the other hand, the potential barrier is smaller in the ⟨1$\bar{1}$1⟩ direction than in the ⟨011⟩ direction. This indicates that two ways for carbon atom drifting to the nanocluster surface are available. The changing of the nickel-atom position significantly influences on the height of the potential barriers of the octahedral and tetrahedral interstitial sites that gives a possibility to manipulate a carbon atom within the near-surface layer of nanocluster. Besides, a carbon atom affects the nanocluster-growth direction, which is estimated by the joining energy for the additional iron atom. The obtained results can be useful in medicine, biology and technologies of nanoelectromechanical systems (NEMS) where both nanoclusters and nanoparticles are used.

Key words: iron nanocluster, energy of nanocluster, impurity atoms, molecular mechanics method.



PACS: 02.70.Ns, 07.05.Tp, 36.40.-c, 61.46.Bc,, 81.05.Zx, 81.07.Oj

Citation: N. V. Bondarenko and A. V. Nedolya, The Estimation of Stability and Growth of F.C.C. Iron Nanocluster Containing the Impurity Atoms, Metallofiz. Noveishie Tekhnol., 40, No. 12: 1675—1687 (2018)

  1. B. M. Smirnov, Cluster Processes in Gases and Plasmas (Weinheim: Wiley–VCH Verlag GmbH & Co. KGaA: 2010). Crossref
  2. V. V. Sagaradze, V. E. Danilchenko, Ph. L'Heritier, and V. A. Shabashov, Mater. Sci. Eng., A, 337, Iss. 1–2: 146 (2002). Crossref
  3. J. A. Alonso, Structure and Properties of Atomic Nanoclusters (Singapore: World Scientific: 2005). Crossref
  4. J. A. Venables, G. D. T. Spiller, and M. Hunbucken, Rep. Prog. Phys., 47, No. 4: 399 (1984). Crossref
  5. Metal Particles and Nanoalloys 3 (Eds. R. L. Johnston and J. Wilcoxon) (Amsterdam: Elsevier Ltd: 2012).
  6. F. Baletto and R. Ferrando, Rev. Mod. Phys., 77, Iss. 1: 371 (2005). Crossref
  7. L. D. Pachón and G. Rothenberg, Appl. Organomet. Chem., 22, Iss. 6: 288 (2008). Crossref
  8. A. K. Singh, Engineered Nanomaterials: Structure, Properties and Mechanisms of Toxicity (Amsterdam: Academic Press, Elsevier Inc.: 2016).
  9. C. Mottet, G. Rossi, F. Baletto, and R. Ferrando, Phys. Rev. Lett., 95, Iss. 3: 035501-1 (2005). Crossref
  10. H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem. Int. Ed., 42, Iss. 11: 1297 (2003). Crossref
  11. B. E. Husic, D. Schebarchov, and D. J. Wales, Nanoscale, 8: 18326 (2016). Crossref
  12. X. G. Ma, Y. F. Liu, N. Liu, J. C. Ren, G. W. Xu, L. Chu, H. Lv, C. Y. Huang, and Y. F. Zhu, J. Phys. Condens. Matter, 27, No. 33: 335301-1 (2015). Crossref
  13. Z. R. Dai, Sh. Sun, and Z. L. Wang, Sur. Sci., 505: 325 (2002). Crossref
  14. J. Diao, K. Gall, and M. L. Dunn, Nat. Mater, 2: 656 (2003). Crossref
  15. L. D. Pachón and G. Rothenberg, Appl. Organomet. Chem., 22, Iss. 6: 288 (2008). Crossref
  16. S. Khanal, A. Spitale, N. Bhattarai, D. Bahena, J. J. Velazquez-Salazar, S. Mejía-Rosales, M. M. Mariscal, and M. José-Yacaman, Beilstein J. Nanotechnol., 5: 1371 (2014). Crossref
  17. M. C. Patterson, B. F. Habenicht, R. L. Kurtz, L. Liu, Y. Xu, and Ph. T. Sprunger, Phys. Rev. B, 89, Iss. 20: 205423-1 (2014). Crossref
  18. L. Liu, J. Yuan, L. Cheng, and J. Yang, Nanoscale, 9, Iss. 2: 856 (2017). Crossref
  19. M. G. Taylor and G. Mpourmpakis, Nat. Commun., 8: 15988-1 (2017). Crossref
  20. F. Kh. Mirzoev and L. A. Shelepin, Tech. Phys. Lett., 28, Iss. 1: 6 (2002). Crossref
  21. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, J. Phase Equilib. Diffus., 12, Iss. 3: 288 (1991). Crossref
  22. Nanostructured Materials: Sciences & Technology (Eds. G.-M. Chow and N. I. Noskova) (USA: Kluwer Academic Publishers: 1998). Crossref
  23. V. G. Gavriljuk, J. Phys. IV France, 112: 51 (2003). Crossref
  24. P. Yu. Volosevitch, V. V. Girzhon, and V. E. Danil'chenko, Scripta Mater., 37, Iss. 7: 977 (1997). Crossref
  25. Iron Systems. Part 1 (Eds. G. Effenberg and S. Ilyenko) (Berlin–Heidelberg: Springer: 2008). Crossref
  26. E. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics (Berlin: Springer Science Business Media BV: 2011). Crossref
  27. K. I. Ramachandran, G. Deepa, and K. Namboori, Computational Chemistry and Molecular Modelling. Principles and Applications (Heidelberg: Springer-Verlag: 2008). Crossref
  28. Q. Yang and A. C. To, Comput. Methods Appl. Mech. Eng., 283: 384 (2015). Crossref
  29. H. M. Ledbetter and R. P. Reed, J. Phys. Chem. Ref. Data, 2, Iss. 3: 531 (1973). Crossref
  30. T. Halicioğlu and G. M. Pound, Phys. Status Solidi A, 30, Iss. 2: 619 (1975). Crossref
  31. M. Riech, Nano-Engineering in Science and Technology. An Introduction to the World Nano-Design (Singapore: World Scientific Publishing Co Pte Ltd: 2003).
  32. J. P. Stark, Solid State Diffusion (New York: John Wiley and Sons: 1976).
  33. A. V. Nedolya and N. V. Bondarenko, Selected Proceedings of the 4th Int. Research and Practice Conf. 'Nanotechnology and Nanomaterials NANO-2016' (Aug. 24–27, 2016, Lviv, Ukraine). Springer Proceedings in Physics (Cham, Switzerland: Springer: 2017), vol. 195, p. 395. Crossref
  34. K. S. Sree Harsha, Principles of Physical Vapor Deposition of Thin Films (Oxford: Elsevier Ltd: 2006).
  35. P. Zhang, E. Mohimi, T. K. Talukdar, and J. R. Abelson, J. Vac. Sci. Technol. A, 34, Iss. 5, Art. No. 051518 (2016). Crossref
  36. I. G. Kabanova, V. V. Sagaradze, N. V. Kataeva, and V. E. Danil'chenko, Phys. Metals. Metallogr., 112: 381 (2011). Crossref