Influence of Heat Treatment in Gas Mediums on Mechanical Properties of Samples of Zr–1%Nb Alloy

V. S. Trush$^{1}$, O. H. Lukyanenko$^{1}$, V. M. Voyevodin$^{2}$, P. I. Stoyev$^{2}$

$^{1}$G. V. Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova Str., UA-79060 Lviv, Ukraine
$^{2}$National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received: 20.06.2018. Download: PDF

The effect of heat treatment in a gas medium at $T$ = 580°C during $\tau$ = 3 h with residual pressure $P$ = 1.33$\cdot10^{-3}$ Pa and in an oxygen-rich gas medium ($T$ = 580°C, $\tau$ = 0.5 h, $P$ = 1.33 Pa + $T$ = 580°C, $\tau$ = 2.5 h, $P$ = 1.33$\cdot10^{-2}$ Pa) on mechanical properties of a Zr–1%Nb alloy is studied experimentally. As shown, depending on the degree of rarefaction of the technological gas medium, a near-surface layer with a certain hardness gradient is formed. As experimentally revealed, the heat treatment of Zr–1%Nb alloy samples in an oxygen-rich gas medium has positive effects on their fatigue life capability at tests by means of pure bending and cyclic stretching. The features of fracture of Zr–1%Nb alloy samples depending on the treatment mode are given.

Key words: zirconium alloy, oxygen-rich gas medium, chemicothermal treatment, near-surface layer, microhardness, fatigue life.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i02/0227.html

DOI: https://doi.org/10.15407/mfint.41.02.0227

PACS: 46.50.+a, 62.20.me, 62.20.Qp, 68.47.Gh, 81.40.Np, 81.65.Mq, 81.70.Bt

Citation: V. S. Trush, O. H. Lukyanenko, V. M. Voyevodin, and P. I. Stoyev, Influence of Heat Treatment in Gas Mediums on Mechanical Properties of Samples of Zr–1%Nb Alloy, Metallofiz. Noveishie Tekhnol., 41, No. 2: 227—240 (2019) (in Ukrainian)


REFERENCES
  1. A. S. Zaimovsky, A. V. Nikulina, and N.G. Reshetnikov, Tsirkonievye Splavy v Atomnoy Energetike [Zirconium Alloys in Nuclear Power Engineering] (Moscow: Energoizdat: 1981) (in Russian).
  2. Fizicheskoe Materialovedenie [Physical Material Science] (Ed. B. A. Kalin) (Moscow: MIFI: 2008), vol. 6, part 1 (in Russian).
  3. D. Lee and P. T. Hill, J. Nucl. Mater., 60, Iss. 2: 227 (1976). Crossref
  4. O. Blahova, R. Medlin, and J. Riha, Metal 2009: 18th International Metallurgical and Materials Conference Proceedings (May 19–21, 2009, Hradec and Moravicí, Czech Republic).
  5. A. I. Chernyaeva, V. M. Stukalov, and T. P. Gritsina, Voprosy Atomnoy Nauki i Tekhniki, 12, No. 1: 96 (2002) (in Russian).
  6. A. V. Nikulina, M. M. Peregud, V. K. Shamardin, and V. P. Kobylyansky, Trudy Mezdunar. Konf. po Reaktornomu Materialovedeniyu (May 22–25, 1990, Alushta) (Kharkiv: 1990), vol. 4, p. 40 (in Russian).
  7. V. P. Kobyliansky, V. K. Shamardin, Z. E. Ostrovsky, V. M. Raevsky, A. V. Nikulina, M. M. Peregud, and V. M. Grigorev, Trudy Mezdunar. Konf. po Reaktornomu Materialovedeniyu (May 22–25, 1990, Alushta) (Kharkiv: 1990), vol. 4, p. 64 (in Russian).
  8. S. A. Nikulin, A. B. Rozhnov, A. Yu. Gusev, T. A. Nechaykina, S. O. Rogachev, and M. Yu. Zadorozhnyya, J. Nucl. Mater., 446, Iss. 1–3: 10 (2014). Crossref
  9. V. S. Vakhrusheva, O. A. Kolenkova, and G. D. Sukhomlin, Voprosy Atomnoy Nauki i Tekhniki, 88, No. 5: 104 (2005) (in Russian).
  10. V. A. Tsikalov, B. V. Samsonov, A. Ya. Rogozyanov et al., Fizika i Khimiya Obrabotki Materialov, No. 6: 3 (1982) (in Russian).
  11. V. M. Azhazha, B. V. Bortz, I. M. Butenko, P. M. V’ugov, V. M. Voevodin, S. D. Lavrinenko, I. M. Neklyudov, M. M. Pylypenko, V. S. Vakhrusheva, T. M. Buryak, G. D. Sukhomlin, V. O. Blagova, K. A. Lindt, V. I. Popov, S. V. Ladokhin, and V. B.Chernyavsky, Nauka Innov., 2, No. 6: 18 (2006) (in Ukrainian). Crossref
  12. G. G. Maksimovich, Mikromekhanicheskie Issledovaniya Svoystv Metallov i Splavov [Micromechanical Studies of the Properties of Metals and Alloys] (Kiev: Naukova Dumka: 1974) (in Russian).
  13. Noureddine Selmi and Ali Sari, Adv. Mater. Phys. Chem., 3, No. 2: 168 (2013). Crossref