Determination of Local Deformations and Their Anisotropy in Polycrystalline Ge by Electron Backscatter Diffraction Data

I. M. Fodchuk$^{1}$, M. S. Solodkyi$^{1}$, M. D. Borcha$^{1}$, S. V. Balovsyak$^{1}$, V. M. Tkach$^{2}$

$^{1}$Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine
$^{2}$V.M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavods’ka Str., UA-04074 Kyiv, Ukraine

Received: 11.10.2018. Download: PDF

A new approach of local average strain determination obtained from the data of electron backscatter diffraction in the local region of polycrystalline samples with a diamond lattice is proposed. A discrete two-dimensional Fourier transform and the power Fourier spectrum are used to analyse the shape and area changes of the intensity profile of the Kikuchi bands. The degree of bands tailing in Kikuchi pattern is related with the deformation values, which are quantitatively described by the changes of average radial period and the radial distribution area of the energy spectrum of the image.

Key words: polycrystalline Ge, electron backscatter diffraction, Kikuchi method, Fourier transform, power Fourier spectrum, deformation.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i03/0403.html

DOI: https://doi.org/10.15407/mfint.41.03.0403

PACS: 61.05.jm, 61.72.Dd, 61.72.Mm, 61.72.uf, 68.35.bg, 68.35.Gy

Citation: I. M. Fodchuk, M. S. Solodkyi, M. D. Borcha, S. V. Balovsyak, and V. M. Tkach, Determination of Local Deformations and Their Anisotropy in Polycrystalline Ge by Electron Backscatter Diffraction Data, Metallofiz. Noveishie Tekhnol., 41, No. 3: 403—415 (2019) (in Russian)


REFERENCES
  1. M. Bosi and G. Attolini, Prog. Cryst. Growth Charact. Mater., 56, No. 3: 146 (2010). Crossref
  2. H. Shang, H. Okorn-Schimdt, J. Ott, P. Kozlowski, S. Steen, E. C. Jones, H.-S. P. Wong, and W. Hanesch, IEEE Electron Device Lett., 24, No. 4: 242 (2003). Crossref
  3. M. Miyao, E. Murakami, H. Etoh, K. Nakagawa, and A. Nishida, J. Cryst. Growth, 111, Nos. 1-4: 912 (1991). Crossref
  4. S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, IEEE J. Sel. Top. Quantum Electron., 12, No. 6: 1489 (2006). Crossref
  5. J. Olson, S. Kurtz, A. Kibbler, and A. Faine, Appl. Phys. Lett., 56, No. 7: 623 (1990). Crossref
  6. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett., 90, No. 18: 183516 (2007). Crossref
  7. D. Shahrjerdi, B. Hekmatshoar, S. S. Mohajerzadeh, A. Khakifirooz, and M. Robertson, J. Electron. Mater., 33, No. 4: 353 (2004). Crossref
  8. N. Yoshida, Y. Hatano, and M. Isomura, Sol. Energy Mater. Sol. Cells, 95, No. 1: 175 (2011). Crossref
  9. W. Ludwig, S. Schmidt, E. M. Lauridsen, and H. F. Poulsen, J. Appl. Crystallogr., 41: 302 (2008). Crossref
  10. A. J. Schwartz, M. Kumar, B. Adams, and D. Field, Electron Backscatter Diffraction in Materials Science (USA: Boston, MA: Springer: 2009). Crossref
  11. I. M. Fodchuk, V. M. Tkach, V. G. Ralchenko, A. P. Bolshakov, E. E. Ashkinazi, I. I. Vlasov, Y. D. Garabazhiv, S. V. Balovsyak, S. V. Tkach, and O. M. Kutsay, Diamond Relat. Mater., 19, Nos. 5-6: 409 (2010). Crossref
  12. I. Fodchuk, S. Balovsyak, M. Borcha, Ya. Garabazhiv, and V. Tkach, phys. status solidi (a), 208, No. 11: 2591 (2011). Crossref
  13. I. Fodchuk, S. Balovsyak, M. Borcha, Ya. Garabazhiv, and V. Tkach, Semiconductor Physics, Quantum Electronics and Optoelectronics, 13, No. 3: 262 (2010).
  14. M. D. Borcha, S. V. Balovsyak, I. M. Fodchuk, V. Yu. Khomenko, O. P. Kroitor, and V. N. Tkach, J. Superhard Materials, 35, No. 5: 284 (2013). Crossref
  15. D. J. Dingley, A. J. Wilkinson, G. Meaden, and P. S. Karamched, J. Electron. Mater., 59, No. 1: 155 (2010). Crossref
  16. M. D. Borcha, S. V. Balovsyak, I. M. Fodchuk, V. Yu. Khomenko, and V. N. Tkach, J. Superhard Materials, 35, No. 4: 220 (2013). Crossref
  17. M. D. Borcha, S. V. Balovsyak, Ya. D. Garabazhiv, V. M. Tkach, and I. M. Fodchuk, Metallofiz. Noveishie Tekhnol., 31, No. 7: 911 (2009) (in Russian).
  18. M. D. Borcha, A. V. Zvyagintseva, V. M. Tkach, K. A. Yushchenko, S. V. Balovsyak, I. M. Fodchuk, and V. Yu. Khomenko, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1359 (2013) (in Russian).
  19. A. Stoll and A. J. Wilkinson, Comput. Mater. Sci., 89: 224 (2014). Crossref
  20. Y. Sasaki, M. Igushi, and M. Hino, Key Eng. Mater., 326-328: 237 (2006). Crossref
  21. D. L. Davidson, J. Mater. Sci. Lett., 1, No. 6: 236 (1982). Crossref
  22. Y. Yoshitomi, K. Ohta, J. Harase, and Y. Suga, Textures and Microstructures, 22, No. 4: 199 (1994). Crossref
  23. M. D. Borcha, S. V. Balovsyak, I. M. Fodchuk, V. Yu. Khomenko, and V. M. Tkach, Metallofiz. Noveishie Tekhnol., 35, No. 8: 1135 (2013) (in Russian).
  24. A. Wilkinson and B. Britton, Mater. Today, 15, No. 9: 366 (2012). Crossref
  25. S. V. Balovsyak and I. M. Fodchuk, Komp’yutyng, 12, No. 2: 160 (2013) (in Ukrainian).
  26. S. V. Balovsyak, O. V. Derevyanchuk, and I. M. Fodchuk, Advances in Computer Science for Engineering and Education (Eds. Z. Hu, S. Petoukhov, I. Dychka, and M. He) (Switzerland: Cham: Springer: 2018). Crossref
  27. R. Gonsales and R. Vuds, Tsifrovaya Obrabotka Izobrazheniy [Digital Processing of Images] (Moscow: Tekhnosfera: 2005) (in Russian).
  28. R. Gonsales, R. Vuds, and S. Eddins, Tsifrovaya Obrabotka Izobrazheniy v Srede MatLab [Digital Processing of Images in MatLab] (Moscow: Tekhnosfera: 2006) (in Russian).