Formation of Island Structures during Melting Process of Tin Films on Amorphous Carbon Substrate

S. V. Dukarov, S. I. Petrushenko, V. M. Sukhov, I. G. Churilov

V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine

Received: 03.04.2018. Download: PDF

The results of research devoted to formation of ordered arrays of particles during melting process of tin films on amorphous carbon substrate are given in the present work. Using scanning electron microscopy the histograms of particle size distribution are constructed for films of different mass thickness. The size dependences of the most probable radius of particles, which are formed during the melting process, and the half-width values of the corresponding histograms are obtained as well. The excess energy, which provides a decomposition of the initially continuous film into separate islands, is estimated and its size dependence is built. As shown, the melting process of films, which are condensed in island structures, provides larger filling coefficients in comparison with the melting process of initially continuous films.

Key words: annealing of films, thermal decomposition, histogram and half-width of distribution, excess energy.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i04/0445.html

DOI: https://doi.org/10.15407/mfint.41.04.0445

PACS: 64.70.dj, 68.35.bd, 68.35.Dv, 68.55.A-, 68.55.J-, 68.60.Dv, 81.16.-c

Citation: S. V. Dukarov, S. I. Petrushenko, V. M. Sukhov, and I. G. Churilov, Formation of Island Structures during Melting Process of Tin Films on Amorphous Carbon Substrate, Metallofiz. Noveishie Tekhnol., 41, No. 4: 445—459 (2019)


REFERENCES
  1. H. Lauter, V. Lauter-Pasyuk, B.Toperverg, L. Romashev, M. Milyaev, T. Krinitsina, E. Kravtsov, V. Ustinov, A. Petrenko, and V. Aksenov, J. Magn. Magn. Mater., 258-259: 338 (2003). Crossref
  2. Yu. N. Khaydukov, A. S. Vasenko, E. A. Kravtsov, V. V. Progliado, V. D. Zhaketov, A. Csik, Yu. V. Nikitenko, A. V. Petrenko, T. Keller, A. A. Golubov, M. Yu. Kupriyanov, V. V. Ustinov, V. L. Aksenov, and B. Keimer, Phys. Rev. B, 97: 144511 (2018). Crossref
  3. A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, D. V. Blagodatkov, M. V. Ryabukhina, M. A. Milyaev, V. V. Ustinov, E. M. Pashaev, I. A. Subbotin, and G. V. Prutskov, J. Exper. Theor. Phys., 120, No. 6: 1041 (2015). Crossref
  4. Himanshu Gupta, Fateh Singh Gill, S. K. Sharma, R. Kumar, and R. M. Mehra, J. Nano- Electron. Phys., 10, No. 3: 03014 (2018). Crossref
  5. Rupali Kulkarni, Amit Pawbake, Ravindra Waykar, Ashok Jadhawar, Haribhau Borate, Rahul Aher, Ajinkya Bhorde, Shruthi Nair, Priyanka Sharma, and Sandesh Jadkar, J. Nano- Electron. Phys., 10, No. 3: 03005 (2018). Crossref
  6. R. N. Zhukov, T. S. Ilina, E. A. Skryleva, B. R. Senatulin, I. V. Kubasov, D. A. Kiselev, G. Suchaneck, M. D. Malinkovich, Yu. N. Parkhomenko, and A. G. Savchenko, J. Nano- Electron. Phys., 10, No. 2: 02009 (2018). Crossref
  7. H. H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T. C. Lee, and P. Fischer, Nature Commun., 7: 11331 (2016). Crossref
  8. J. Chen, H. Che, K. Huang, C. Liu, and W. Shi, Appl. Catalysis B: Environmental, 192: 134 (2016). Crossref
  9. J. Gan, B. B. Rajeeva, Z. Wu, D. Penley, C. Liang, Y. Tong, and Y. Zheng, Nanotechnology, 27, No. 23: 235401 (2016). Crossref
  10. T. I. Borodinova, V. I. Styopkin, A. A. Vasko, V. Ye. Kutsenko, and O. A. Marchenko, J. Nano- Electron. Phys., 10, No. 3: 03017 (2018). Crossref
  11. B. I. Turko, V. B. Kapustianyk, L. R. Toporovska, V. P. Rudyk, V. S. Tsybulskyi, and R. Y. Serkiz, J. Nano- Electron. Phys., 10, No. 2: 02002 (2018). Crossref
  12. S. Wahyuningsih, F. N. Ainiy, and A. H. Ramelan, J. Nano- Electron. Phys., 10, No. 1: 01004 (2018). Crossref
  13. P. A. Kumar, S. Mitra, and K. Mandal, Indian J. Pure Appl. Phys., 45, No. 1: 21 (2007).
  14. S. B. Dalavi and R. N. Panda, J. Magn. Magn. Mater., 374, No. 15: 411 (2015). Crossref
  15. V. O. Yukhymchuk, O. M. Hreshchuk, M. Y. Valakh, M. A. Skoryk, V. S. Efanov, and N. A. Matveevskaya, Semicond. Phys. Quantum Electron. Optoelectron., 17, No. 3: 217 (2014). Crossref
  16. Yu. V. Naidich, I. I. Gab, T. V. Stetsyuk, B. D. Kostyuk, and S. I. Martynuyk, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1225 (2015) (in Ukrainian). Crossref
  17. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1351 (2016) (in Ukrainian). Crossref
  18. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Vacuum, 142: 29 (2017). Crossref
  19. S. V. Dukarov, S. I. Petrushenko, V. N. Sukhov, and I. G. Churilov, Problems Atomic Sci. Technol., 89, No. 1: 110 (2014).
  20. A. P. Kryshtal, Appl. Surf. Sci., 321: 548 (2014). Crossref
  21. S. I. Petrushenko, S. V. Dukarov, V. N. Sukhov, and I. G. Churilov, J. Nano- Electron. Phys., 7, No. 2: 2033-1 (2015).
  22. S. V. Dukarov, S. I. Petrushenko, V. N. Sukhov, I. G. Churilov, A. L. Samsonik, and O. I. Skryl, Acta Phys. Polonica A, 133, No. 5: 1186 (2018). Crossref
  23. N. T. Gladkikh, S. V. Dukarov, A. P. Krishtal', V. I. Larin, V. N. Sukhov, and S. I. Bogatyrenko, Poverkhnostnye Yavleniya i Fazovye Prevrashcheniya v Kon-densirovannykh Plenkakh [Surface Phenomena and Phase Transformations in Condensed Films] (Kharkiv: KHNU imeni V. N. Karazina: 2004) (in Russian).
  24. P. G. Vassilev, Bulgarian J. Phys., 3: 184 (1976).
  25. A. P. Kryshtal, Appl. Surf. Sci., 321: 548 (2014). Crossref
  26. A. P. Kryshtal, N. T. Gladkikh, and R. V. Sukhov, Appl. Surf. Sci., 257, No. 17: 7649 (2011). Crossref
  27. A. A. Minenkov, S. I. Bogatyrenko, R. V. Sukhov, and A.P. Kryshtal, Phys. Solid State, 56, No. 4: 823 (2014). Crossref
  28. S. V. Dukarov, S. I. Petrushenko, and V. N. Sukhov, J. Nano- Electron. Phys., 10, No. 1: 01023 (2018) (in Russian). Crossref