Magnetic Microstructure of Epitaxial Films of LaGa-Substituted Yttrium Iron Garnet

A. O. Kotsyubynsky$^{1}$, V. V. Moklyak$^{2}$, I. M. Fodchuk$^{1}$, V. O. Kotsyubynsky$^{3}$, P. M. Lytvyn$^{4}$, A. B. Grubyak$^{3}$

$^{1}$Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
$^{4}$V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 11.10.2018. Download: PDF

The influence of growth conditions to the magnetic microstructure and the parameters of the stress state of LaGa-substituted yttrium iron garnet epitaxial films is analysed. As proved, there are two magnetically non-equivalent tetra-coordinated positions of Fe$^{3+}$ ions with different values and orientations of effective magnetic fields on nuclei for an unsubstituted YIG/GGG film. The appearance of these fields is due to a violation of the anion sublattice stoichiometry and an introduction of impurity atoms into the crystal structure from a melt solution during the growth process. The quantitative characteristics of the dipole-dipole interaction between the $^{57}$Fe nuclei in the garnet structure are obtained experimentally if the Ga$^{3+}$ ions appear in their immediate surroundings. In addition, the change in the orientation of the resulting magnetization vector depending on the magnitude of the diamagnetic substitution is observed. As found, the relatively higher values of period of a stripe domain structure are typical for films with relatively higher values of the component $\epsilon_{zz}$ of the strain tensor when the compression stresses prevails. As established, the increasing of the domain structure period is observed for samples grown at values of the degree of supercooling of $\Delta T$ = 23–24 K. The phenomenological model of the interconnection of the stress state of films and the parameters of its domain structure is proposed.

Key words: epitaxial film, yttrium iron garnet, Mössbauer spectroscopy, magnetic field microscopy, magnetic domain.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i04/0529.html

DOI: https://doi.org/10.15407/mfint.41.04.0529

PACS: 68.37.Rt, 68.55.-a, 75.60.Ch, 75.70.Kw, 76.80.+y, 77.80.Dj

Citation: A. O. Kotsyubynsky, V. V. Moklyak, I. M. Fodchuk, V. O. Kotsyubynsky, P. M. Lytvyn, and A. B. Grubyak, Magnetic Microstructure of Epitaxial Films of LaGa-Substituted Yttrium Iron Garnet, Metallofiz. Noveishie Tekhnol., 41, No. 4: 529—548 (2019) (in Ukrainian)


REFERENCES
  1. T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, Cryst. Res. Technol., 38, Nos. 7-8: 575 (2003). Crossref
  2. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature, 464: 262 (2010). Crossref
  3. A. I. Stognij, L. V. Lutsev, V. E. Bursian, and N. N. Novitskii, J. Appl. Phys., 118, No. 2: 023905 (2015). Crossref
  4. H. Wang, C. Du, P. C. Hammel, and F. Yang, Phys. Rev. B, 89, Iss. 13: 134404 (2014). Crossref
  5. M. Shone, Circuits, Systems, and Signal Processing, 4, Iss. 1-2: 89 (1985). Crossref
  6. I. M. Fodchuk, I. I. Gutsuliak, V. V. Dovganiuk, A. O. Kotsyubynskiy, U. Pietsch, N. V. Pashniak, O. Yu. Bonchyk, I. M. Syvorotka, and P. M. Lytvyn, Applied Optics, 55, Iss. 12: B144 (2016). Crossref
  7. S. L. Blank and J. W. Nielsen, J. Crystal Growth, 17: 302 (1972). Crossref
  8. B. Strocka, P. Holst, and W. Tolksdorf, Philips J. Res., 33, Nos. 3/4: 166 (1978).
  9. I. M. Fodchuk, I. I. Gutsuliak, R. A. Zaplitniy, S. V. Balovsyak, I. P. Yaremiy, O. Yu. Bonchyk, G. V. Savitskiy, I. M. Syvorotka, and P. M. Lytvyn, Semiconductor Physics, Quantum Electronics and Optoelectronics, 16, No. 3: 246 (2013). Crossref
  10. A. V. Vashkovskiy, E. G. Lokk, and V. I. Shcheglov, Fizika Tverdogo Tela, 41, No. 11: 2034 (1999) (in Russian).
  11. B. K. Ostafijchuk, V. D. Fedoriv, V. O. Kotsyubyns'ky, V. M. Pylypiv, V. V. Moklyak, and V. V Kaspruk, Metallofiz. Noveishie Tekhnol., 27, No. 6: 765 (2005) (in Russian).
  12. G. K. Wertheim, Mössbauer Effect: Principles and Applications (New York and London: Academic Press: 2013).
  13. V. I. Gol'danskiy, Khimicheskie Primeneniya Messbauerovskoy Spektroskopii [Chemical Applications of Mössbauer Spectroscopy] (Moscow: Mir: 1970) (in Russian).
  14. F. Salvat and J. Parellada, Nucl. Instrum. Meth. Phys. Res. B, 1: 70 (1984). Crossref
  15. M. Niyaifar, A. Beitollahi, N. Shiri, M. Mozaffari, and J. Amighian, J. Magnetism and Magnetic Materials, 322, No. 7: 777 (2010). Crossref
  16. M. A. Gilleo, Ferromagnetic Insulators: Garnets (New Jersey: Nort-Holland Publishing Company: 1980). Crossref
  17. S. V. Vonsovskiy, Magnetizm [Magnetism] (Moscow: Nauka: 1971) (in Russian).
  18. G. Balestrino, S. Lagomarsino, B. Maturi, and A. Tucciarone, IEEE Transactions on Magnetics, 20, No. 5: 1864 (1984). Crossref
  19. R. F. Pearson, J. Appl. Phys., 33, No. 3: 1236 (1962). Crossref
  20. P. Hansen, P. Röschmann, and W. Tolksdorf, J. Appl. Phys., 45, No. 6: 2728 (1974). Crossref
  21. D. Nečas and P. Klapetek, Open Physics, 10, No. 1: 181 (2012). Crossref
  22. A. L. Khvalin, Antenny, No. 11: 51 (2011).
  23. A. L. Khvalin, Vestnik Tikhookeanskogo Gosudarstvennogo Universiteta, 1: 28 (2013) (in Russian).
  24. W. Szmaja, Advances in Imaging and Electron Physics, 141: 175 (2006). Crossref
  25. V. O. Kotsyubynskyy, V. M. Pylypiv, B. K. Ostafiychuk, I. P. Yaremiy, O. Z. Garpul', E. S. Skakunova, V. B. Molodkin, and S. I. Olikhovskyy, Metallofiz. Noveishie Tekhnol., 36, No. 8: 1049 (2014) (in Ukrainian). Crossref
  26. Yu. P. Khapachev and F. N. Chukhovskiy, Kristallografiya, 34, No. 3: 776 (1989) (in Russian).
  27. N. N. Evtikheeva and B. N. Naumova, Elementy i Ustroystva na TsMD. Spravochnik [Elements and Devices on CMD. Handbook] (Moscow: Radio i Svyaz': 1987) (in Russian).
  28. L. M. Letyuk, V. G. Andreev, A. V. Gonchar, I. I. Kaneva, V. G. Kostishin, and D. G. Krutogin, Izvestiya Vysshikh Uchebnykh Zavedeniy. Materialy Elektronnoy Tekhniki, 3: 59 (2005) (in Russian).
  29. V. J. Fratello, S. E. G. Slusky, C. D. Brandle, and M. P. Norelli, J. Appl. Phys., 60, No. 2: 718 (1986). Crossref