Phase State, Crystal Structure, Diffusion Processes and Magnetoresistance of Three-Layer Structures Based on Fe$_x$Со$_{1-x}$ ($x \cong$ 0.5) and Cu

D. I. Saltykov, Yu. O. Shkurdoda, I. Yu. Protsenko

Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 03.10.2019. Download: PDF

The comprehensive analysis of the phase state, crystal structure and magnetoresistive properties of three-layer films based on alloy Fe$_x$Со$_{1-x}$ ($x \cong$ 0.5) and Cu is done. As shown, a phase state of as-deposited and annealed to 700 K films corresponds to the b.c.c. Fe$_x$Со$_{1-x}$ alloy (single-layer films) or b.c.c. Fe$_x$Со$_{1-x}$ + f.c.c. solid solution of Fe and Co atoms, which isomorphic replace each other in the Cu lattice (three-layer film). Annealing at the temperature of 700 K does not lead to complete mixing of the layers, their original order maintained. For as-deposited three-layer film systems, the isotropic field dependences with maximum values of magnetoresistance (MR) (0.3%) for $d_{\textrm{F}} \cong$ 30 nm (magnetic layers) and $d_{\textrm{N}} \cong$ 5 nm (nonmagnetic layer) are fixed. The process of heat treatment of three-layer samples with $d_{\textrm{F}} \cong$ 20–30 nm, $d_{\textrm{N}} \cong$ 4–15 nm at a temperature of 550 K leads to 4–6 times increase of isotropic MR. Further annealing at a temperature of 700 K causes the appearance of anisotropic magnetoresistance.

Key words: three-layer film, phase composition, spin-dependent electron scattering, magnetoresistance.



PACS: 68.55.-a, 72.25.Mk, 73.63.Bd, 73.90.+f, 75.47.De, 81.40.Ef

Citation: D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, Phase State, Crystal Structure, Diffusion Processes and Magnetoresistance of Three-Layer Structures Based on Fe$_x$Со$_{1-x}$ ($x \cong$ 0.5) and Cu, Metallofiz. Noveishie Tekhnol., 41, No. 5: 595—605 (2019)

  1. A. M. Pogorily, S. M. Ryabchenko, and A. I. Tovstolytkin, Ukrayins'kyy Fizychnyy Zhurnal Rev., 6, No. 1: 37 (2010).
  2. C. D. Damsgaard, B. T. Dalslet, S. C. Freitas, P. P. Freitas, and M. F. Hansen, Sens. Actuators A, 156, No. 1: 103 (2009). Crossref
  3. O. I. Tovstolytkin, M. O. Borovyy, V. V. Kurylyuk, and Yu. A. Kunyts'kyy, Fizychni Osnovy Spintroniky [Physical Foundations of Spintronics] (Vinnytsia: Nilan-LTD: 2014) (in Ukrainian).
  4. Yu. O. Shkurdoda, I. M. Pazukha, and A. M. Chornous, Intermetallics, 93: 1 (2018). Crossref
  5. Turgut Sahin, Hakan Kockar, and Mursel Alper, J. Magn. Magn. Mater., 373: 128 (2015). Crossref
  6. E. M. Kakuno, D. H. Mosca, I. Mazzaro, N. Mattoso, W. H. Schreiner, M. A. B. Gomes, and M. P. Cantão, J. Electrochem. Soc., 144, No. 9: 3222 (1997). Crossref
  7. Ikuo Ohnuma, Hirotoshi Enoki, Osamu Ikeda, Ryosuke Kainuma, Hiroshi Ohtani, Bo Sundman, and Kiyohito Ishida, Acta Mater., 50, No. 2: 379 (2002). Crossref
  8. E. Y. Tsymbal and D. G. Pettifor, Solid State Phys., 56: 113 (2001). Crossref
  9. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano-Electron. Phys., 10, No. 4: 04031 (2018). Crossref
  10. S. K. J. Lenczowski, M. A. M. Gijs, J. B. Giesbers, R. J. M. van de Veerdonk, and W. J. M. de Jonge, Phys. Rev. B, 50, No. 14: 9982 (1994). Crossref
  11. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett., 61, No. 21: 2472 (1988). Crossref
  12. S. S. P. Parkin, Annu. Rev. Mater. Sci., 25: 357 (1995). Crossref
  13. Ia. M. Lytvynenko, I. M. Pazukha, and V. V. Bibyk, J. Nano- Electron. Phys., 6, No. 2: 02014 (2014).
  14. E. M. Kakuno, R. C. da Silva, N. Mattoso, W. H. Schreiner, D. H. Mosca, and S. R. Teixeira, J. Phys. D: Appl. Phys., 32, No. 11: 1209 (1999). Crossref
  15. Y. Jyoko, S. Kashiwabara, Y. Hayashi, and W. Schwarzacher, J. Magn. Magn. Mater., 198-199: 239 (1999). Crossref