Effect of Heat Treatments on the Microstructure and Wear Resistance of a Modified Hadfield Steel

S. Ayadi, A. Hadji

Badji Mokhtar University, B.P. 12, CP 23000 Annaba, Algeria

Received: 03.09.2018; final version - 12.02.2019. Download: PDF

In this study, the effect of heat treatments on the microstructure and wear resistance of Hadfield steel with different Cr + Ni contents is investigated. Hadfield steel with 1.2% wt. C and 12% wt. Mn is melted in an electric arc furnace. Added elements (Cr and Ni) are crushed and added as ultra-fine powders of ferro-alloyed composition in a well heated ladle. Two series of heat treatments are applied: one at 1100°C and the other at 1050°C. The microstructure of these steels is analysed using optical microscopy, scanning electron microscopy and X-ray diffraction. The Rockwell C hardness and the Vickers microhardness are measured at ambient temperature. The wear behaviour of all samples in as-cast and heat treated states is studied using pin-on-disk wear tests. The obtained results show that the microstructure of the as-cast Hadfield steel samples consists of an austenitic matrix and complex carbides precipitated at the grain boundaries. Increase in the Cr + Ni content refines the structure that improves the hardness and the wear resistance. In the heat-treated state, the microstructure reveals two distinct phases: martensite and retained austenite. The increase of heat treatment temperature favours the martensitic transformation, which positively affects the hardness and wear behaviour of studied steels.

Key words: Hadfield steel, chromium, nickel, heat treatment, microstructure, wear resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i05/0607.html

DOI: https://doi.org/10.15407/mfint.41.05.0607

PACS: 46.55.+d, 61.66.Dk, 61.72.-y, 62.20.Qp, 81.05.-t, 81.40.Ef, 81.40.Pq

Citation: S. Ayadi and A. Hadji, Effect of Heat Treatments on the Microstructure and Wear Resistance of a Modified Hadfield Steel, Metallofiz. Noveishie Tekhnol., 41, No. 5: 607—620 (2019)

  1. V. G. Gavriljuk, A. I. Tyshchenko, O. N. Razumov, Yu. N. Petrov, B. D. Shanina, and H. Berns, Materials Science and Engineering A, 420: 47 (2006). Crossref
  2. A. Nasajpour, A. H. Kokabi, P. Davami, and S. Nikzad, J. Alloys and Compounds, 659: 262 (2016). Crossref
  3. R. Harzallah, A. Mouftiez, E. Felder, S. Hariri, and J. P. Maujean, Wear, 269: 647 (2010). Crossref
  4. S. A. Balogun, D. E. Esezobor, and J. O. Agunsoye, J. Minerals and Materials Characterization and Engineering, 7, No. 3:, 277 (2008). Crossref
  5. P. C. Machado, J. I. Pereira, J. J. Penagos, T. Yonamine, and A. Sinatora, Wear, 376-377: 1064 (2017). Crossref
  6. G. Tęcza and S. Sobula, Archives of Foundry Engineering, 14: 67 (2014). Crossref
  7. X. Y. Feng, F. C. Zhangn, Z. N. Yang, and M. Zhang, Wear, 305: 299 (2013). Crossref
  8. D. Siafakas, T. Matsushita, A. Lauenstein, J. Ekengard, and E. W. Jarfors, Metals, 7: 186 (2017). Crossref
  9. P. Chowdhury, D. Canadinc, and H. Sehitoglu, Materials Science and Engineering R, 122: 1 (2017). Crossref
  10. R. Sinha and A. K. Mukhopadhyay, Materials Research, 20 (4): 1153 (2017). Crossref
  11. Y. Feng, R. Song, S. Peng, C. Cai, and Z. Tan, Materials Science Forum, 898: 766 (2017). Crossref
  12. J. M. Pelletier, E. Sauger, Y. Gachon, and A. B. Vannes, Materials Science, 34: 2955 (1999). Crossref
  13. K. N. Vdovin, D. A. Gorlenko, N. A. Feoktistov, Metal Science and Heat Treatment, 59, Nos. 3-4: (2017). Crossref
  14. Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, and Z. Asadi, Materials and Metallurgical Engineering, 7, No. 7: 582 (2013). Crossref
  15. J. O. Agunsoye, S. I. Talabi, and O. Bello, Advances in Production Engineering and Management, 10, No. 2: 97 (2015). Crossref
  16. H. Maouche, A. Hadji, and K. Bouhamla, Metallurgical and Mining Industry, No. 3: 75 (2016).
  17. A. Gharbi, H. Maouche, and O. Ghelloudj, Acta Physica Polonica A, 131, No. 3: 346 (2017). Crossref
  18. L. G. Korshunov, I. I. Kositsina, V. V. Sagaradze, and N. L. Chernenko, Physics of Metals and Metallography, 112, No. 1: 90 (2011). Crossref
  19. Y. Zhang, J. Li , C. B. Shi, Y. F. Qi, and Q. T. Zhu, Metals, 7, Iss. 3: 94: (2017). Crossref
  20. M. M. Atabaki, S. Jafari, and H. Abdollah-pour, J. Iron and Steel Research International, 19, No. 4: 43 (2012). Crossref
  21. B. Kalandyk, G. Tęcza, R. Zapała, and S. Sobula, Archives of Foundry Engineering, 15: 35 (2015). Crossref
  22. E. G. Moghaddam, N. Varahram, and P. Davami, Materials Science and Engineering A, 532: 260 (2012). Crossref