The Effect of the Aging Time on Microstructure and Mechanical Properties of the AA7075 Alloy after T6 Heat Treatment

Ijlal Simsek$^{1}$, Dogan Simsek$^{2}$, Dursun Ozyurek$^{1}$, Süleyman Tekeli$^{3}$

$^{1}$Karabük University, Iron and Steel Institute, Balıklar Kayası Campus, 78050 Karabük, Turkey
$^{2}$Bitlis Eren University, Rahva Yerleşkesi Beş Minare Mah. Ahmet Eren Blvd., 13100 Merkez/Bitlis, Turkey
$^{3}$Gazi University, Teknikokullar, 06560 Ankara, Turkey

Received: 05.10.2018. Download: PDF

In this study, the effect of the aging time on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment is investigated. The AA7075 alloys are quenched after solid solution treatment at 485°C for 2 hours and artificially aged at 120°C using five different aging times. Hardness measurements, microstructure examinations (SEM + EDS, XRD), and tensile tests are performed for the aged alloys. Fractured surfaces are also examined using SEM images after the tensile testing. The results of the studies conducted show that the hardness value of the alloys can be increased by increasing aging time, and the maximum hardness value of 192 HV is obtained for the alloy aged for 25 hours. Tensile tests also show that the tensile strength of the alloy can be increased by increasing aging time, and the maximum tensile strength value of 580 MPa is obtained for the alloy aged for 25 hours. Fractured surface examinations revealed that the ductile fracture mechanism is mostly dominant, while the planar fracture mechanism is observed as well.

Key words: AA7075 alloy, aging time, microstructure, mechanical properties, tensile strength.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i06/0817.html

DOI: https://doi.org/10.15407/mfint.41.06.0817

PACS: 81.05.Bx, 81.30.Mh, 81.40.Cd, 81.40.Gh, 81.40.Np

Citation: Ijlal Simsek, Dogan Simsek, Dursun Ozyurek, and Süleyman Tekeli, The Effect of the Aging Time on Microstructure and Mechanical Properties of the AA7075 Alloy after T6 Heat Treatment, Metallofiz. Noveishie Tekhnol., 41, No. 6: 817—824 (2019)


REFERENCES
  1. G. Ozer and A. Karaaslan, Trans. Nonfer. Metal. Soc. China, 27, Iss. 11: 2357 (2017). Crossref
  2. X.-l. Zou, H. Yan, and X.-h. Chen, Trans. Nonfer. Metal. Soc. China, 27, Iss. 10: 2146 (2017). Crossref
  3. Y.-C. Chen, D. Bakavos, A. Gholinia, and P. B. Prangnell, Acta Mater., 60, Iss. 6-7: 2816 (2012). Crossref
  4. J.-f. Li, Zh.-w. Peng, Ch.-x. Li, Zh.-q. Jia, W.-j. Chen, and Z.-q. Zheng, Trans. Nonfer. Metal. Soc. China, 18, Iss. 4: 775 (2008). Crossref
  5. K. S. Al-Rubaie, E. K. L. Barroso, and L. B. Godefroid, Mater. Sci. Eng., A, 486, Iss. 1-2: 585 (2008). Crossref
  6. L. P. Huang, K. H. Chen, S. Li, and M. Song, Scr. Mater., 56, Iss. 4: 305 (2007). Crossref
  7. Y. C. Lin, J.-L. Zhang, G. Liu, and Y.-J. Liang, Mater. Des., 83: 866 (2015). Crossref
  8. X. Xu, Y. Zhao, B. Ma, and M. Zhang, Mater. Charact., 105: 90 (2015). Crossref
  9. M. Yildirim, D. G. Özyürek, and M. Gürü, Arab. J. Sci. Eng., 41, Iss. 11: 4273 (2016). Crossref
  10. Y. Liu, D. M. Jiang, and W. J. Li, J. Alloy. Comp., 671: 408 (2016). Crossref
  11. M. Liu, B. Klobes, and K. Maier, Scr. Mater., 64, Iss. 1: 21 (2011). Crossref
  12. N. Han, X. Zhang, S. Liu, B. Ke, and X. Xin, Mater. Sci. Eng., A, 528, Iss. 10-11: 3714 (2011). Crossref
  13. A. Fakioglu, D. Özyürek, and R. Yilmaz, High Temp. Mater. Proc., 32, Iss. 4: 345 (2013). Crossref
  14. A. G. Leacock, C. Howe, D. Brown, O.-G. Lademo, and A. Deering, Mater. Des., 49: 160 (2013). Crossref
  15. A. K. Mukhopadhyay, Q. B. Yang, and S. R. Singh, Acta Metall. Mater., 42, Iss. 9: 3083 (1994). Crossref
  16. L. K. Berg, J. Gjønnes, V. Hansen, X. Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L. R. Wallenberg, Acta Mater., 49, Iss. 17: 3443 (2001). Crossref
  17. A. Kalyon and D. Özyürek, Acta Phys. Pol., A, 131, No. 1: 150 (2017). Crossref
  18. Chun Feng, Zhiyi Liu, Ai-lin Ning, Yan-bin Liu, and Su-min Zeng, Trans. Nonferr. Metal. Soc. China, 16, Iss. 5: 1163 (2006). Crossref