Dipole-Exchange Spin Waves in the System of One-Dimensional Periodic Chain of Elliptic Antidots

V. V. Danylchuk, V. V. Kulish

National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 26.11.2018; final version - 17.03.2019. Download: PDF

In the paper, spin waves are investigated in a thin film composed of a uniaxial ferromagnet in which a one-dimensional periodic system of elliptic antidots is present. The ferromagnet has an ‘easy axis’ type. For such a system, an equation for the magnetic potential is obtained in the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects. The solution of the above-mentioned equation and, respectively, the dispersion relation for the investigated spin waves are found. For the case of elongated antidots, so that their bigger semiaxes are much larger than smaller one, the transverse wavenumbers’ spectrum and the spectrum of frequencies’ values are found.

Key words: spin wave, thin magnetic film, antidot, dipole-exchange theory.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i07/0837.html

DOI: https://doi.org/10.15407/mfint.41.07.0837

PACS: 62.23.St, 75.30.Ds, 75.50.Gg, 75.75.Jn, 75.90.+w

Citation: V. V. Danylchuk and V. V. Kulish, Dipole-Exchange Spin Waves in the System of One-Dimensional Periodic Chain of Elliptic Antidots, Metallofiz. Noveishie Tekhnol., 41, No. 7: 837—849 (2019) (in Ukrainian)

  1. S. Neusser and D. Grundler, Adv. Mater., 21, No. 28: 2927 (2009). Crossref
  2. C. Chappert. A. Fert, and F. N. Van Dau, Nat. Mater., No. 6: 813 (2007). Crossref
  3. T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett., No. 92: 022505 (2008). Crossref
  4. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys., 43: 264001 (2010). Crossref
  5. S. D. Bader and S. S. P. Parkin, Ann. Rev. Condens. Matter Phys., 1: 71 (2010). Crossref
  6. R. P. van Stapele, F. J. A. M. Greidanus, and J. W. Smits, J. Appl. Phys., 57: 1282 (1985). Crossref
  7. M. Bauer, O. Buttner, S. O. Demokritov, B. Hillebrands, V. Grimalsky, Yu. Rapoport, and A. N. Slavin, Phys. Rev. Lett., 81: 3769 (1998). Crossref
  8. F. G. Aliev. J. F. Sierra, A. A. Awad. G. N. Kakazei, D. S. Han, S.-K. Kim, V. Metlushko, B. Hic, and K. Y. Gulienko, Phys. Rev. B, 79: 174433 (2009). Crossref
  9. R. Skomski, M. Chipara, and D. J. Sellmyer, J. Appl, Phys., 93: 7604 (2003). Crossref
  10. R. Arias and D. L. Mills, Phys. Rev. B, 63: 134439 (2001). Crossref
  11. S. M. Cherif, Y. Roussigne, C. Dugautier, and P. Moch, J. Magn. Magn. Mater., 222: 337 (2000). Crossref
  12. O. Yu. Gorobets and V. Yu. Gorobets, Chaos, Solitons & Fractals, 23: 1121 (2005). Crossref
  13. K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, Phys. Rev. Lett., 96: 067205 (2006). Crossref
  14. M. J. Van Bael, L. Van Look, K. Temst, M. Lange, J. Bekaert, U. May, G. Guntherodt, V. V. Moshchalkov, and Y. Bruynseraede, Physica C, 332: 12 (2000). Crossref
  15. S. Neusser, G. Duerr, H. G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C. H. Back, and D. Grundler, Phys. Rev. Lett., 105: 067208 (2010). Crossref
  16. Y. Otani, S. G. Kim, T. Kohda, K. Fukamichi, O. Kitakami, and Y. Shimada, IEEE T. Magn., No. 34: 1090 (1998). Crossref
  17. M. Kostylev, G. Gubbiotti, G. Carlotti, G. Socino, S. Tacchi, Ch. Wang, N. Singh, A. O. Adeyeye, and R. L. Stamps, J. Appl. Phys., No. 103: 07C507 (2008). Crossref
  18. A. I. Akhiyezer, V. G. Bar'yakhtar, and S. V. Peletminskiy, Spinovye Volny [Spin Waves] (Moscow: Nauka: 1967) (in Russian).
  19. V. V. Kulish, Int J. Eng. Res. Sci., 3: 64 (2017). Crossref
  20. E. B. Sonin, Phys. Rev. B, 95: 144432 (2017). Crossref